【題目】如圖,△ABC中,AB=AC=5,線段AB的垂直平分線DE分別交邊AB、AC于點E、D.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若△BCD的周長為8,求BC的長.
科目:初中數(shù)學 來源: 題型:
【題目】已知和為等腰三角形,,,,點在上,點在射線上.
(1)如圖1,若∠BAC=60°,點F與點C重合,求證:AF=AE+AD;
(2)如圖2,若AD=AB,求證:AF=AE+BC. .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,點A、B的橫坐標分別為a、,二次函數(shù)的圖象經(jīng)過點A、B,且a、m滿足為常數(shù).
若一次函數(shù)的圖象經(jīng)過A、B兩點.
當、時,求k的值;
若y隨x的增大而減小,求d的取值范圍;
當且、時,判斷直線AB與x軸的位置關(guān)系,并說明理由;
點A、B的位置隨著a的變化而變化,設(shè)點A、B運動的路線與y軸分別相交于點C、D,線段CD的長度會發(fā)生變化嗎?如果不變,求出CD的長;如果變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D,E,F分別在AB,BC,AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=50°時,求∠DEF的度數(shù);
(3)若∠A=∠DEF,判斷△DEF是否為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬元) | 2 |
種植樹木利潤y1(萬元) | 4 |
種植花卉利潤y2(萬元) | 2 |
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,,,,D是AC邊上的一個動點,將沿BD所在直線折疊,使點A落在點E處.
如圖,若點D是AC的中點,連接求證:四邊形BCED是平行四邊形;
如圖,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王抽樣調(diào)查了本地若干天的空氣質(zhì)量情況,把空氣質(zhì)量分成四類:類,類,類和類,分別對應(yīng)的質(zhì)量級別為優(yōu)、良、輕度污染和中度污染四種情況,并繪制兩個統(tǒng)計圖(部分信息缺失);
空氣質(zhì)量條形統(tǒng)計圖
空氣質(zhì)量扇形統(tǒng)計圖
(1)本次調(diào)查的樣本容量是________;
(2)已知類和類在扇形統(tǒng)計圖中所占的夾角為度,類的頻數(shù)是類的倍,通過計算,求出類和類的頻數(shù),并完成條形統(tǒng)計圖;
(3)計算類在扇形統(tǒng)計圖中所對應(yīng)的圓心角度數(shù);
(4)若一年按天計算,求本地全年空氣質(zhì)量達到優(yōu)良以上的天數(shù)(保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com