【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A,B兩點(diǎn),點(diǎn)P在以為圓心,1為半徑的⊙C上,Q是AP的中點(diǎn),已知OQ長(zhǎng)的最小值為,則的值為______.
【答案】
【解析】
作輔助線,先確定OQ長(zhǎng)的最小時(shí),點(diǎn)P的位置,當(dāng)BP延長(zhǎng)線過(guò)圓心C時(shí),BP最短,設(shè)B(t,-2t),則CD=2-t,BD=2t,根據(jù)勾股定理計(jì)算t的值,可得k的值.
解:連接BP,
由對(duì)稱(chēng)性得:OA=OB,
∵Q是AP的中點(diǎn),
∴OQ=BP,
∵OQ長(zhǎng)的最小值為,
∴BP長(zhǎng)的最小值為×2=1,
如圖,當(dāng)BP的延長(zhǎng)線過(guò)圓心C時(shí),BP最短,過(guò)B作BD⊥x軸于D,
∵CP=1,
∴BC=2,
∵B在直線y=-2x上,
設(shè)B(t,-2t),則CD=2-t,BD=2t,
在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,
∴22=(2-t)2+(2t)2,
∴t=0(舍)或 ,
∴B(,-),
∵點(diǎn)B在反比例函數(shù)y=(k<0)的圖象上,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是 y=﹣x2+2x+.
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線交y軸于點(diǎn)A,交x軸于點(diǎn)B,點(diǎn)C在線段OA上,點(diǎn)D在線段OB上,且,點(diǎn)C、D不與點(diǎn)O重合,以CD為直徑的圓交直線AB于兩點(diǎn)E、F,連接OE、OF,則當(dāng)的面積的最大時(shí),線段EF的長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點(diǎn),且∠A=∠EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結(jié)論正確的個(gè)數(shù)是( 。
A.3
B.4
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【閱讀理解】
某科技公司生產(chǎn)一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷(xiāo)售成本三部分。經(jīng)核算,2016年該產(chǎn)品各部分成本所占比例約為2:a:1,且2016年該產(chǎn)品的技術(shù)成本、制造成本分別為400萬(wàn)元、1400萬(wàn)元。
(1)確定a的值,并求2016年產(chǎn)品總成本為多少萬(wàn)元。
(2)為降低總成本,該公司2017年及2018年增加了技術(shù)投入,確保這兩年技術(shù)成本都比前一年增加一個(gè)相同的百分?jǐn)?shù)m(m<50%),制造成本在這兩年里都比前一年減少一個(gè)相同的百分?jǐn)?shù)2m;同時(shí)為了擴(kuò)大銷(xiāo)售量,2018年的銷(xiāo)售成本將在2016年的基礎(chǔ)上提高10%,經(jīng)過(guò)以上變革,預(yù)計(jì)2018年該產(chǎn)品總成本達(dá)到2016年該產(chǎn)品總成本的。求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)學(xué)生小麗,小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.
小強(qiáng):如果以13元/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.
小紅:我通過(guò)調(diào)查驗(yàn)證發(fā)現(xiàn)每天的銷(xiāo)售量(千克)與銷(xiāo)售單價(jià)(元)之間存在一次函數(shù)關(guān)系.
(1)求(千克)與(元)的函數(shù)關(guān)系式.
(2)當(dāng)銷(xiāo)售單價(jià)為何值時(shí),該超市銷(xiāo)售這種水果每天獲得的利潤(rùn)達(dá)600元?[利潤(rùn)=銷(xiāo)售量×(銷(xiāo)售單價(jià)﹣進(jìn)價(jià))].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的頂點(diǎn)為(m,n)拋物線的頂點(diǎn)為(m,n),如果 ,那么我們稱(chēng)拋物線與關(guān)于點(diǎn) 中心對(duì)稱(chēng),給出拋物線①;②
(1)判斷拋物線①與拋物線②是否中心對(duì)稱(chēng)?若是,求出對(duì)稱(chēng)中心的坐標(biāo);若不是,說(shuō)明理由;
(2)直線y=m交拋物線①于A. B兩點(diǎn),交拋物線②于C. D兩點(diǎn),如果AB=2CD,求m的值;
(3)設(shè)拋物線①與拋物線②的頂點(diǎn)分別為M、N,點(diǎn)P在x軸上移動(dòng),若△MNP為直角三角形,求點(diǎn)P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位為了創(chuàng)建城市文明單位,準(zhǔn)備在單位的墻(線段MN所示)外開(kāi)辟一處長(zhǎng)方形的上地進(jìn)行綠化美化,除墻體外三面要用柵欄圍起來(lái),計(jì)劃用柵欄50米,設(shè)AB的長(zhǎng)為x米,長(zhǎng)方形的面積為y平方米.
(1)請(qǐng)求出y與x的函數(shù)關(guān)系式(不需寫(xiě)出自變量的取值范圍)
(2)不考慮墻體長(zhǎng)度,問(wèn)AB的長(zhǎng)為多少時(shí),長(zhǎng)方形的面積最大?
(3)若墻體長(zhǎng)度為20米,問(wèn)長(zhǎng)方形面積最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知OA=10cm,OB=5cm,點(diǎn)P從點(diǎn)O開(kāi)始沿OA邊向點(diǎn)A以2cm/s的速度移動(dòng);點(diǎn)Q從點(diǎn)B開(kāi)始沿BO邊向點(diǎn)O以1cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤5),
(1)用含t的代數(shù)式表示:線段PO= cm;OQ= cm.
(2)當(dāng)t為何值時(shí),四邊形PABQ的面積為19cm2.
(3)當(dāng)△POQ與△AOB相似時(shí),求出t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com