如圖所示:直線MN⊥RS于點(diǎn)O,點(diǎn)B在射線OS上,OB=2,點(diǎn)C在射線ON上,OC=2,點(diǎn)E是射線OM上一動(dòng)點(diǎn),連結(jié)EB,過O作OP⊥EB于P,連結(jié)CP,過P作PF⊥PC交射線OS于F。
(1)求證:△POC∽△PBF。
(2)當(dāng)OE=1,OE=2時(shí), BF的長分別為多少?當(dāng)OE=n時(shí),BF=_______.
(3)當(dāng)OE=1時(shí),;OE=2時(shí), ;…,OE=n時(shí),.則=_______.(直接寫出答案)

備用圖

 

(1)證明:∵∠OPB=∠CPF 
∴∠OPC=∠BPF ,
∵∠EOP=∠EOB=90,
∴∠EOP=∠OBP 
∴∠POC=∠PBF
∴⊿POC∽⊿PBF               
(2) 解∵ ⊿POC∽⊿PBF
∴OC/BF=PO/PB
∵⊿OPB∽⊿EOB
∴PO/PB=OE/OB
∴OC/BF= OE/OB
∴OE.BF=OC.OB=4               
∴當(dāng)OE=1時(shí),BF=4;
當(dāng)OE=2時(shí),BF=2,當(dāng)OE=n時(shí),BF="4/n."
(3)根據(jù)題意得;=2n;
(1)根據(jù)∠OPB=∠CPF,得出∠OPC=∠BPF,再根據(jù)∠EOP=∠EOB=90,得出∠EOP=∠OBP,∠POC=∠PBF,即可證出△POC∽△PBF;              
(2)根據(jù)△POC∽△PBF,得出OC/BF ="PO/PB" ,再根據(jù)△OPB∽△EOB,得出OE•BF=OC•OB=4,即可求出BF的長;
(3)根據(jù)已知條件當(dāng)OE=1時(shí),S△EBF=S1;OE=2時(shí),S△EBF=S2;…,OE=n時(shí),S△EBF=Sn即可求出S1+S2+…+Sn=2n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在中,的平分線分別與交于點(diǎn)、
(1)求證:
(2)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將三角形紙片(△ ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′,F(xiàn),C為頂點(diǎn)的三角形與△ ABC相似,那么BF的長度是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,、分別是、的中點(diǎn),則    。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題是真命題的有
①若a>b,則ac2>bc2
②內(nèi)錯(cuò)角相等
=
④分式方程一定有增根
⑤所有正方形都相似
⑥點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC),若AC=2,則AB·BC=4
A. 1個(gè)    B. 2個(gè)    C. 3個(gè)    D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明和他的同學(xué)在太陽下行走,小明身高1.4米,他的影長為1.75米,他同學(xué)的身高為1.6米,則此時(shí)他的同學(xué)的影長為       米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請?jiān)趫D甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連結(jié)三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結(jié)各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連結(jié)它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?
(請用計(jì)算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)
②當(dāng)n>1時(shí),請寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=2,AD=4,AC的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則EF=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知、、三條線段,其中,若線段是線段的比例中項(xiàng),則         

查看答案和解析>>

同步練習(xí)冊答案