【題目】如圖,平行四邊形ABCD內(nèi)接于⊙O,則∠ADC=(
A.45°
B.50°
C.60°
D.75°

【答案】C
【解析】解:∵四邊形ABCD是平行四邊形, ∴∠ABC=∠AOC,
∵平行四邊形ABCD內(nèi)接于⊙O,
∴∠ABC+∠ADC=180°,
由圓周角定理得,∠ADC= ∠AOC,
∴∠ADC=60°,
故選:C.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)和圓內(nèi)接四邊形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣5,0),直線y= x+t與坐標(biāo)軸交于點(diǎn)B,C,連結(jié)AC,如果∠ACD=90°,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在對(duì)角線AC上,點(diǎn)F在邊BC上,連接BE、DF,DF交對(duì)角線AC于點(diǎn)G,且DE=DG.
(1)求證:AE=CG;
(2)試判斷BE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD,EF相交于點(diǎn)O.

(1)寫出∠COE的鄰補(bǔ)角;

(2)分別寫出∠COE和∠BOE的對(duì)頂角;

(3)如果∠BOD60°,∠BOF90°,求∠AOF和∠FOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=CD,AD=BC,AC、BD相交于點(diǎn)O,過點(diǎn)O的直線交AD、BC于點(diǎn)F、E,則圖中全等三角形共有_____對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

國(guó)際比賽的足球場(chǎng)長(zhǎng)在100m110m之間,寬在64m75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個(gè)長(zhǎng)方形的足球場(chǎng),其長(zhǎng)是寬的1.5倍,面積是7560m2請(qǐng)你判斷這個(gè)足球場(chǎng)能用于國(guó)際比賽嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,ACB=90°,AC=BC,D AB 的中點(diǎn),點(diǎn) E 是邊 AC 上的一動(dòng)點(diǎn),點(diǎn)F 是邊 BC 上的一動(dòng)點(diǎn).

(1) AE=CF,試證明 DE=DF;

(2)在點(diǎn) E、點(diǎn) F 的運(yùn)動(dòng)過程中,若 DEDF試判斷 DE DF 是否一定相等? 并加以說明.

(3)在(2)的條件下,若 AC=2,四邊形 ECFD 的面積是一個(gè)定值嗎?若不是, 請(qǐng)說明理由,若是,請(qǐng)直接寫出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD)
(1)如圖1,若點(diǎn)F在CD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交射線DA于點(diǎn)H、G.

①求證:PG=PF; ②探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖2,若點(diǎn)F在CD的延長(zhǎng)線上(不與D重合),過點(diǎn)P作PG⊥PF,交射線DA于點(diǎn)G,你認(rèn)為(1)中DF、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明;若不成立,請(qǐng)寫出它們所滿足的數(shù)量關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如何求tan75°的值?按下列方法作圖可解決問題.如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)M,在射線BM上截取線段BD,使BD=AB,連接AD.連接此圖可求得tan75°的值為( )

A.2-
B.2+
C.1+
D.
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案