【題目】如圖1,把一張正方形紙片對(duì)折得到長(zhǎng)方形ABCD,再沿∠ADC的平分線DE折疊,如圖2,點(diǎn)C落在點(diǎn)C′處,最后按圖3所示方式折疊,使點(diǎn)A落在DE的中點(diǎn)A′處,折痕是FG,若原正方形紙片的邊長(zhǎng)為6cm,則FG=cm.
【答案】
【解析】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′, ∵GF⊥AA′,
∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,
∴∠MGF=∠KAC′,
∴△AKC′≌△GFM,
∴GF=AK,
∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,
∴ = ,
∴ = ,
∴C′K=1.5cm,
在Rt△AC′K中,AK= = cm,
∴FG=AK= cm,
所以答案是 .
【考點(diǎn)精析】利用矩形的性質(zhì)和正方形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cos∠EFG的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某區(qū)為綠化行車道,計(jì)劃購(gòu)買甲、乙兩種樹苗共計(jì)n棵.設(shè)購(gòu)買甲種樹苗x棵,有關(guān)甲、乙兩種樹苗的信息如圖所示.
(1)當(dāng)n=500時(shí),
①根據(jù)信息填表(用含x的式子表示);
樹苗類型 | 甲種樹苗 | 乙種樹苗 |
購(gòu)買樹苗數(shù)量(單位:棵) | x | |
購(gòu)買樹苗的總費(fèi)用(單位:元) |
②如果購(gòu)買甲、乙兩種樹苗共用去25 600元,那么甲、乙兩種樹苗各購(gòu)買了多少棵?
(2)要使這批樹苗的成活率不低于92%,且使購(gòu)買這兩種樹苗的總費(fèi)用為26 000元,求n的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0, ).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(13分)(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?
(3)如圖3,點(diǎn)A在點(diǎn)O的北偏西30°處,點(diǎn)B在點(diǎn)O的南偏東70°處,且AO=BO,點(diǎn)A沿正東方向移動(dòng)249米到達(dá)E處,點(diǎn)B沿北偏東50°方向移動(dòng)334米到達(dá)點(diǎn)F處,從點(diǎn)O觀測(cè)到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從 A,B 兩地同時(shí)出發(fā),沿同一條路線相向勻速行駛.出發(fā)后經(jīng) 2 小時(shí)兩車相遇, 已知在相遇時(shí)乙車比甲車多行駛了 30 千米.相遇后若乙車?yán)^續(xù)往前行駛,還需 1.6 小時(shí)才能 到達(dá) A 地.
(1)求甲,乙兩車行駛的速度分別是多少?
(2)如果相遇后甲車?yán)^續(xù)前往 B 地(到達(dá)后停止行駛),乙車在相遇點(diǎn)休息了 10 分鐘后,按 原速度立即返回 B 地,問乙車重新出發(fā)后多長(zhǎng)時(shí)間,兩車相距 5 千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( 。
A. ①②③④ B. ①②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,MP和NQ分別垂直平分AB和AC.
(1)若△APQ的周長(zhǎng)為12,求BC的長(zhǎng);
(2)∠BAC=105°,求∠PAQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B(4,0),與過A點(diǎn)的直線相交于另一點(diǎn)D(3, ),過點(diǎn)D作DC⊥x軸,垂足為C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P在線段OC上(不與點(diǎn)O、C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點(diǎn)N,連接CM,求△PCM面積的最大值;
(3)若P是x軸正半軸上的一動(dòng)點(diǎn),設(shè)OP的長(zhǎng)為t,是否存在t,使以點(diǎn)M、C、D、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com