【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D的中點(diǎn),EOD延長(zhǎng)線上一點(diǎn),且∠CAE=2C,ACBD交于點(diǎn)H,與OE交于點(diǎn)F

(1)求證:AE是⊙O的切線;

(2)DH=9,tanC=,求直徑AB的長(zhǎng).

【答案】(1)證明見解析

(2)20

【解析】

(1)根據(jù)垂徑定理得到OEAC,求得∠AFE=90°,求得∠EAO=90°,于是得到結(jié)論;

(2)根據(jù)等腰三角形的性質(zhì)和圓周角定理得到∠ODB=C,求得tanC=tanODB=

設(shè)HF=3xDF=4x,根據(jù)勾股定理得到DF=,根據(jù)相似三角形的性質(zhì)得到

求得AF=CF=

設(shè)OA=OD=x,根據(jù)勾股定理即可得到結(jié)論.

(1)D的中點(diǎn)

OEAC

∴∠AFE=90°

∴∠E+EAF=90°

∵∠AOE=2C,∠CAE=2C

∴∠CAE=AOE

∴∠E+AOE=90°

∴∠EAO=90°

AE是⊙O的切線

(2)連接AD,在RtADH

∵∠DAC=C

tanDAC=tanC=

DH=9

AD=12

RtBDA中,∵tanB=tanC=

sinB=

AB=20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表示以為自變量的函數(shù),則表示當(dāng)時(shí)函數(shù)的值.例如,一次函數(shù)記作,當(dāng)時(shí),函數(shù)值.現(xiàn)給出新定義:對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則稱點(diǎn)是函數(shù)奇妙點(diǎn)

1)求函數(shù)奇妙點(diǎn);

2)當(dāng)為何值時(shí),函數(shù)存在奇妙點(diǎn)?

3)若二次函數(shù)有且只有一個(gè)奇妙點(diǎn),其圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),軸上一動(dòng)點(diǎn).當(dāng)的周長(zhǎng)最短時(shí),求點(diǎn)的坐標(biāo)及的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知A(44),B(-11),EF=1,線段EFx軸上平移,當(dāng)四邊形ABEF的周長(zhǎng)最小時(shí),點(diǎn)E坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某種月餅形狀的俯視圖如圖1所示,該形狀由1個(gè)正六邊形和6個(gè)半圓組成,半圓直徑與正六邊形的邊長(zhǎng)相等.

現(xiàn)商家設(shè)計(jì)了2種棱柱體包裝盒,其底面分別為矩形和正六邊形(如圖2和圖3)我們可從底面的利用率來記算整個(gè)包裝盒的利用情況.(底面利用率=×100%)

1)請(qǐng)分別計(jì)算出圖2與圖3中的底面利用率(結(jié)果保留到0.1%);

2)考慮到節(jié)約成本,商家希望底面利用率能夠不低于80%,且底面圖形仍然采用最基本的幾何形狀,請(qǐng)問商家的要求是否能夠滿足,若可以滿足,請(qǐng)?jiān)O(shè)計(jì)一種方案,并直接寫出此時(shí)的利用率;若不能滿足,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78(即最高點(diǎn)OAB的距離為78),跨徑為90(AB=90),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的半徑為2,圓心在坐標(biāo)原點(diǎn),正方形的邊長(zhǎng)為2,點(diǎn)、在第二象限,點(diǎn)、上,且點(diǎn)的坐標(biāo)為(02).現(xiàn)將正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)運(yùn)動(dòng)到了上點(diǎn)處,點(diǎn)、分別運(yùn)動(dòng)到了點(diǎn)處,即得到正方形(點(diǎn)重合);再將正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)運(yùn)動(dòng)到了上點(diǎn)處,點(diǎn)、分別運(yùn)動(dòng)到了點(diǎn)、處,即得到正方形(點(diǎn)重合),……,按上述方法旋轉(zhuǎn)2020次后,點(diǎn)的坐標(biāo)為(

A.0,2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售一種名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件,

1)若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?

2)當(dāng)每件襯衫降價(jià)多少元時(shí),商場(chǎng)每天獲利最大,每天獲利最大是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位在疫情期間用3000元購(gòu)進(jìn)AB兩種口罩1100個(gè),購(gòu)買A種口罩與購(gòu)買B種口罩的費(fèi)用相同,且A種口罩的單價(jià)是B種口罩單價(jià)的1.2倍;

1)求A,B兩種口罩的單價(jià)各是多少元?

2)若計(jì)劃用不超過7000元的資金再次購(gòu)進(jìn)AB兩種口罩共2600個(gè),已知A、B兩種口罩的進(jìn)價(jià)不變,求A種口罩最多能購(gòu)進(jìn)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】使用家用燃?xì)庠顭_同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_一壺水最節(jié)省燃?xì)獾男o角度約為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案