【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點,拱高為78(即最高點OAB的距離為78),跨徑為90(AB=90),以最高點O為坐標原點,以平行于AB的直線為軸建立平面直角坐標系,則此拋物線鋼拱的函數(shù)表達式為( )

A.B.C.D.

【答案】B

【解析】

設拋物線解析式為y=ax2,由已知可得點B坐標為(45,-78),利用待定系數(shù)法進行求解即可.

∵拱高為78(即最高點OAB的距離為78),跨徑為90(AB=90),以最高點O為坐標原點,以平行于AB的直線為軸建立平面直角坐標系,

設拋物線解析式為y=ax2,點B(45,-78)

∴-78=452a,

解得:a=,

∴此拋物線鋼拱的函數(shù)表達式為,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點,其對稱軸為直線,結合圖象分析下列結論:①;②;③當時,的增大而增大;④一元二次方程的兩根分別為,;⑤;⑥若,為方程的兩個根,則,其中正確的結論有(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BAAD,CDDA,垂足分別為AD.從D點測到B點的仰角α60°,從C點測得B點的仰角β30°,甲建筑物的高AB=30

(1)求甲、乙兩建筑物之間的距離AD

(2)求乙建筑物的高CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABOD的頂點A是函數(shù)y=-x-(k+1)的圖象與函數(shù)y=在第二象限的圖象的交點,B,D兩點在坐標軸上,且長方形ABOD的面積為3.

(1)求兩函數(shù)的表達式;

(2)求兩函數(shù)圖象的交點A,C的坐標;

(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣積極響應市政府加大產(chǎn)業(yè)扶貧力度的號召,決定成立草莓產(chǎn)銷合作社,負責扶貧對象戶種植草莓的技術指導和統(tǒng)一銷售,所獲利潤年底分紅.經(jīng)市場調(diào)研發(fā)現(xiàn),草莓銷售單價(萬元)與產(chǎn)量x(噸)之間的關系如圖所示.已知草莓的產(chǎn)銷投入總成本(萬元)與產(chǎn)量x(噸)之間滿足

(1)直接寫出草莓銷售單價(萬元)與產(chǎn)量(噸)之間的函數(shù)關系式;

(2)求該合作社所獲利潤(萬元)與產(chǎn)量(噸)之間的函數(shù)關系式;

(3)為提高農(nóng)民種植草莓的積極性,合作社決定按萬元/噸的標準獎勵扶貧對象種植戶,為確保合作社所獲利潤(萬元)不低于萬元,產(chǎn)量至少要達到多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州漆器名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.

(1)求之間的函數(shù)關系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便?/span>.某校數(shù)學興趣小組設計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

1)這次活動共調(diào)查了多少人;

2)將條形統(tǒng)計圖補充完整;

3)在一次購物中,小明和小亮都想從微信、支付寶、銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把某矩形紙片ABCD沿EF、GH折疊(點E、HAD邊上,點F、GBC邊上),使得點B、點C落在AD邊上同一點P處,A點的對稱點為點,D點的對稱點為點,若,的面積為4,的面積為1,則矩形ABCD的面積等于_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習了矩形后,數(shù)學活動小組開展了探究活動.如圖1,在矩形中,,,點上,先以為折痕將點往右折,如圖2所示,再過點,垂足為,如圖3所示.

1)在圖3中,若,則的度數(shù)為______,的長度為______.

2)在(1)的條件下,求的長.

3)在圖3中,若,則______.

查看答案和解析>>

同步練習冊答案