【題目】下列說法正確的是( )

A.購買張彩票就中獎是不可能事件

B.概率為的事件是不可能事件

C.任意畫一個六邊形,它的內(nèi)角和等于是必然事件

D.中任取個不同的數(shù),分別記為,那么的概率是

【答案】D

【解析】

根據(jù)必然事件、不可能事件、隨機事件以及畫出樹狀圖求概率即可解答.

解:A. “購買張彩票就中獎是隨機事件,故選項A不滿足題意;

B. “概率為的事件是隨機事件,故選項B不滿足題意;

C. 任意畫一個六邊形,它的內(nèi)角和等于720°,則任意畫一個六邊形的內(nèi)角和等于是不可能事件,故選項C不滿足題意;

D.根據(jù)題意畫出樹狀圖如下:

∴共有12種等可能的結(jié)果,任取兩個不同的數(shù),a2+b2>19的有4種結(jié)果

a2+b2 > 19的概率是,故選項D滿足題意.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是邊BC上任意一點(點E不與點BC重合),連結(jié)DE,點C關(guān)于DE的對稱點為C1,連結(jié)AC1并延長交DE的延長線于點MFAC1的中點,連結(jié)DF

(猜想)如圖①,∠FDM的大小為   度.

(探究)如圖②,過點AAM1DFMD的延長線于點M1,連結(jié)BM.求證:ABM≌△ADM1

(拓展)如圖③,連結(jié)AC,若正方形ABCD的邊長為2,則ACC1面積的最大值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】都是整數(shù),且每個數(shù)都滿足都滿足,若的最小值是的最小值是,...,則的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在一筆直的海岸線上有A,B兩個觀測站,AB的正東方向,有一艘小船停在點PA測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測站之間的距離;

(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更精準地關(guān)愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.

1)該班共有   名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補充完整;

3)已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關(guān)愛活動,請你估計該校將有多少名留守學生在此關(guān)愛活動中受益?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學的一個數(shù)學興趣小組在本校學生中開展了主題為霧霾知多少的專題調(diào)查括動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A.非常了解B.比較了解、C.基本了解、D.不太了解四個等級,將所得數(shù)據(jù)進行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結(jié)合圖表中的信息解答下列問題

等級

A

B

C

D

頻數(shù)

40

120

36

n

頻率

0.2

m

0.18

0.02

1)表中m   ,n   ;

2)扇形統(tǒng)計圖中,A部分所對應的扇形的圓心角是   °,所抽取學生對丁霧霾了解程度的眾數(shù)是   ;

3)若該校共有學生1500人,請根據(jù)調(diào)查結(jié)果估計這些學生中比較了解人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①,②,在矩形ABCD中,AB=4BC=8,P,Q分別是邊BC,CD上的點.

(1)如圖①,若APPQBP=2,求CQ的長;

(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點,求四邊形EPGF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸于點,現(xiàn)將直線繞點順時針方向旋轉(zhuǎn)45°軸于點,則直線的函數(shù)表達式是_________

查看答案和解析>>

同步練習冊答案