【題目】如圖AD是△ABC的角平分線,DF⊥AB,垂足為F,如圖DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積( 。
A.6B.12C.8D.3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標系xOy中,把從點P出發(fā)沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為5,即PS+SQ=5或PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個小區(qū)的坐標分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,以的AC邊為直徑作交斜邊AB于點E,連接EO并延長交BC的延長線于點D,作交BC于點F,連接EF.
求證:
求證:EF是的切線;
若的半徑為3,,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點和點.
求該拋物線所對應(yīng)的函數(shù)解析式;
該拋物線與直線相交于C、D兩點,點P是拋物線上的動點且位于x軸下方,直線軸,分別與x軸和直線CD交于點M、N.
連結(jié)PC、PD,如圖1,在點P運動過程中,的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;
連結(jié)PB,過點C作,垂足為點Q,如圖2,是否存在點P,使得與相似?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點,交y軸與點,直線軸正半軸于點M,交線段AB于點C,,連接DA,.
求點D的坐標及過O、D、B三點的拋物線的解析式;
若點P是線段MB上一動點,過點P作x軸的垂線,交AB于點F,交上問中的拋物線于點E.
連接請求出滿足四邊形DCEF為平行四邊形的點P的坐標;
連接CE,是否存在點P,使與相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點A(1,2)在這個函數(shù)的圖象上,求k的值;
(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax﹣3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2ax﹣3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像這樣,先添﹣適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2﹣6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實數(shù),當x為何值時,此多項式2x2的最小值是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com