【題目】如圖,直線AB交x軸于點(diǎn),交y軸與點(diǎn),直線軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,,連接DA,.
求點(diǎn)D的坐標(biāo)及過O、D、B三點(diǎn)的拋物線的解析式;
若點(diǎn)P是線段MB上一動點(diǎn),過點(diǎn)P作x軸的垂線,交AB于點(diǎn)F,交上問中的拋物線于點(diǎn)E.
連接請求出滿足四邊形DCEF為平行四邊形的點(diǎn)P的坐標(biāo);
連接CE,是否存在點(diǎn)P,使與相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】②存在或.
【解析】
(1)先求出點(diǎn)D的坐標(biāo),再把、、,代入,即可求出過O、D、B三點(diǎn)的拋物線的解析式;
(2)①先求出AB所在的直線解析式,利用列出方程求解即可;
②存在;設(shè),由于對頂角,故當(dāng)與相似時(shí),分為:,兩種情況,根據(jù)等腰直角三角形的性質(zhì)求P點(diǎn)坐標(biāo)即可.
,
,
,
,
,
設(shè)拋物線的解析式為,
把、、,代入得,
解得,
過O、D、B三點(diǎn)的拋物線的解析式為;
(2)①,,
所在的直線解析式為,
∵C點(diǎn)橫坐標(biāo)為2,
∴C點(diǎn)坐標(biāo)為(2,2),
,
則當(dāng)時(shí),滿足四邊形DCEF為平行四邊形,
設(shè)點(diǎn),
的縱坐標(biāo)為,E的縱坐標(biāo)為,
,
解得舍去或,
;
②存在;
過O、D、B三點(diǎn)的拋物線的解析式為,
由①得,設(shè),
,,
1.當(dāng)時(shí)如圖,與相似,
過C點(diǎn)作,
∵OA=OB,
∴∠OBA=45°,
∴、、為等腰直角三角形,
則,
將代入拋物線中,得,
解得或,
故P點(diǎn)坐標(biāo)為;
2.當(dāng)時(shí)如圖,
此時(shí),,為等腰直角三角形,
則,
將代入拋物線中,得,
解得舍去或,
故P點(diǎn)坐標(biāo)為.
故答案為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=x2與直線y2=-x+3相交于A,B兩點(diǎn).
(1)求這兩個交點(diǎn)的坐標(biāo);
(2)點(diǎn)O的坐標(biāo)是原點(diǎn),求△AOB的面積;
(3)直接寫出當(dāng)y1<y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABF中,BE⊥AF垂足為E,AD∥BC,且AF平分∠DAB,求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AD是△ABC的角平分線,DF⊥AB,垂足為F,如圖DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積( 。
A.6B.12C.8D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù),下列結(jié)論錯誤的是( )
A.函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)是
B.函數(shù)值隨自變量的增大而減小
C.函數(shù)的圖象不經(jīng)過第三象限
D.函數(shù)的圖象向下平移個單位長度得到的圖象
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=(6+3m)x+(n-4).
(1)m為何值時(shí),y隨x的增大而減小.
(2)m,n分別為何值時(shí),函數(shù)的圖象經(jīng)過原點(diǎn)?
(3)m,n分別為何值時(shí),函數(shù)的圖象與y=3x+2平行,且與y軸的交點(diǎn)在x軸的下方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)P為AC邊上的一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)(點(diǎn)P對應(yīng)點(diǎn)P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時(shí),點(diǎn)B、P、P′恰好在同一直線上,此時(shí)作P′E⊥AC于點(diǎn)E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動,這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為以AQ為腰的等腰三角形?若存在,請求出E點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)在AC段的拋物線上有一點(diǎn)R到直線AC的距離最大,請直接寫出點(diǎn)R的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com