【題目】定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長(zhǎng)稱(chēng)為P,Q的“實(shí)際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實(shí)際距離”為5,即PS+SQ=5或PT+TQ=5.環(huán)保低碳的共享單車(chē),正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點(diǎn)M表示單車(chē)停放點(diǎn),且滿(mǎn)足M到A,B,C的“實(shí)際距離”相等,則點(diǎn)M的坐標(biāo)為_____.
【答案】(1,﹣2).
【解析】
解:若設(shè)M(x,y),則由題目中對(duì)“實(shí)際距離”的定義可得方程組:3-x+1-y=y+5+x+1=5-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為:(1,-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AE,BD是角平分線(xiàn),CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,則MN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】6月5日是世界環(huán)境日,為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某市第一中學(xué)舉行了“環(huán)保知識(shí)競(jìng)賽”,參賽人數(shù)1000人,為了了解本次競(jìng)賽的成績(jī)情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(jī)(滿(mǎn)分為100分,得分取整數(shù))進(jìn)行統(tǒng)計(jì),并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:
(1)直接寫(xiě)出a的值,并補(bǔ)全頻數(shù)分布直方圖.
分組 | 頻數(shù) | 頻率 |
49.5~59.5 | 0.08 | |
59.5~69.5 | 0.12 | |
69.5~79.5 | 20 | |
79.5~89.5 | 32 | |
89.5~100.5 | a |
(2)若成績(jī)?cè)?/span>80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績(jī)?yōu)閮?yōu)秀的約為多少人?
(3)若這組被抽查的學(xué)生成績(jī)的中位數(shù)是80分,請(qǐng)直接寫(xiě)出被抽查的學(xué)生中得分為80分的至少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、F、E、C在同一直線(xiàn)上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC 于 B,過(guò) B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問(wèn)的條件下,分別作∠ABD、∠DBC 的平分線(xiàn)交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線(xiàn)交線(xiàn)段AB于點(diǎn)P,則線(xiàn)段PQ的最小是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是由幾個(gè)相同的小正方體搭成的幾何體,
(1)搭成這個(gè)幾何體需要 個(gè)小正方體;
(2)畫(huà)出這個(gè)幾何體的主視圖和左視圖;
(3)在保持主視圖和左視圖不變的情況下,最多可以拿掉n個(gè)小正方體,則n= ,請(qǐng)?jiān)趥溆脠D中畫(huà)出拿掉n個(gè)小正方體后新的幾何體的俯視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C1:y=x2+2x﹣3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線(xiàn)C2:y=ax2+bx+c經(jīng)過(guò)點(diǎn)B,與x軸的另一個(gè)交點(diǎn)為E(﹣4,0),與y軸交于點(diǎn)D(0,2).
(1)求拋物線(xiàn)C2的解析式;
(2)設(shè)點(diǎn)P為線(xiàn)段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過(guò)點(diǎn)P作x軸的垂線(xiàn)交拋物線(xiàn)C1于點(diǎn)M,交拋物線(xiàn)C2于點(diǎn)N.
①當(dāng)四邊形AMBN的面積最大時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)CM=DN≠0時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com