【題目】如圖,已知點(diǎn)A、F、EC在同一直線上,AB∥CD∠ABE=∠CDF,AF=CE

1)從圖中任找兩組全等三角形;

2)從(1)中任選一組進(jìn)行證明.

【答案】1△ABE≌△CDF,△AFD≌△CEB(2)

【解析】

試題(1)根據(jù)題目所給條件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根據(jù)已知條件易得∠ACD=∠CABAE=FC,再由∠ABE=∠CDF,根據(jù)AAS可判定△ABE≌△CDF

試題解析:解:(1△ABE≌△CDF,△AFD≌△CEB;

2∵AB∥CD,

∴∠ACD=∠CAB

∵AF=CE,

∴AF+EF=CE+EF,

AE=FC,

△ABE△CDF中,

,

∴△ABE≌△CDFAAS).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).

(1)如圖1,連接BE、CE,問(wèn):BE=CE成立嗎?并說(shuō)明理由;

(2)如圖2,若BAC=45°,BE的延長(zhǎng)線與AC垂直相交于點(diǎn)F時(shí),問(wèn):EF=CF成立嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;

(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1:y=kx+b平行于直線y=x﹣1,且與直線l2 相交于點(diǎn)P(﹣1,0).

(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點(diǎn)A.一動(dòng)點(diǎn)C從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B1處后,改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A1處后,再沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B2處后,又改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A2處后,仍沿平行于x軸的方向運(yùn)動(dòng),…
照此規(guī)律運(yùn)動(dòng),動(dòng)點(diǎn)C依次經(jīng)過(guò)點(diǎn)B1 , A1 , B2 , A2 , B3 , A3 , …,Bn , An , …
①求點(diǎn)B1 , B2 , A1 , A2的坐標(biāo);
②請(qǐng)你通過(guò)歸納得出點(diǎn)An、Bn的坐標(biāo);并求當(dāng)動(dòng)點(diǎn)C到達(dá)An處時(shí),運(yùn)動(dòng)的總路徑的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D,E,AD,CE相交于點(diǎn)H,已知EH=EB=6,AE=8,則CH的長(zhǎng)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=90°,AB=AC,MN是經(jīng)過(guò)點(diǎn)A的直線,BD⊥MN,CE⊥MN,垂足分別為D,E.

(1)求證:①∠BAD=∠ACE;②BD=AE.

(2)請(qǐng)寫出BD,CE,DE三者間的數(shù)量關(guān)系式,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長(zhǎng)稱為P,Q實(shí)際距離.如圖,若P(﹣1,1),Q(2,3),則P,Q實(shí)際距離5,即PS+SQ=5PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點(diǎn)M表示單車停放點(diǎn),且滿足MA,B,C實(shí)際距離相等,則點(diǎn)M的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= 的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)A作AH⊥y軸于H,OH=3,tan∠AOH= ,點(diǎn)B的坐標(biāo)為(m,﹣2).
(1)求△AHO的周長(zhǎng);
(2)求反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠BOC=α.

(1)α=40°,OD平分∠AOC,DOE=90°,如圖(a)所示,求∠AOE的度數(shù);

(2)若∠AOD=AOC,DOE=60°,如圖(b)所示,請(qǐng)用α表示∠AOE的度數(shù);

(3)若∠AOD=AOC,DOE=(n≥2,且n為正整數(shù)),如圖(c)所示,請(qǐng)用αn表示∠AOE的度數(shù)(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案