【題目】6月5日是世界環(huán)境日,為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某市第一中學(xué)舉行了“環(huán)保知識競賽”,參賽人數(shù)1000人,為了了解本次競賽的成績情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(滿分為100分,得分取整數(shù))進(jìn)行統(tǒng)計,并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:
(1)直接寫出a的值,并補(bǔ)全頻數(shù)分布直方圖.
分組 | 頻數(shù) | 頻率 |
49.5~59.5 | 0.08 | |
59.5~69.5 | 0.12 | |
69.5~79.5 | 20 | |
79.5~89.5 | 32 | |
89.5~100.5 | a |
(2)若成績在80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績?yōu)閮?yōu)秀的約為多少人?
(3)若這組被抽查的學(xué)生成績的中位數(shù)是80分,請直接寫出被抽查的學(xué)生中得分為80分的至少有多少人?
【答案】(1)0.28,
(2)600人(3)11人
【解析】
(1)根據(jù)第一組的頻數(shù)8與頻率0.08,列式求出被抽取的學(xué)生的總?cè)藬?shù),再根據(jù)頻率求出第二組的頻數(shù),然后求出最后一組的頻數(shù),用頻數(shù)除以被抽取的總?cè)藬?shù)即可得到a的值;根據(jù)計算補(bǔ)全統(tǒng)計圖即可;
(2)用后兩組的頻率乘以參賽總?cè)藬?shù)1000,計算即可得解;
(3)根據(jù)中位數(shù)的定義,確定被抽取的100名學(xué)生中的第50與第51人都在第四組,可知第51人使這一組的第11人,從而得解.
解:(1)被抽取的學(xué)生總?cè)藬?shù)為:8÷0.08=100人,
59.569.5的頻數(shù)為:100×0.12=12,
89.5100.5的頻數(shù)為:1008122032=10072=28,
所以,a= =0.28,
補(bǔ)全統(tǒng)計圖如圖;
(2)成績優(yōu)秀的學(xué)生約為:×1000=600(人)
答:成績優(yōu)秀的學(xué)生約為600人.
(3)根據(jù)統(tǒng)計表,第50人與第51人都在79.589.5一組,
∵中位數(shù)是80,而這一組的最低分是80,
∴得分為80分的至少有:5181220=5140=11(人).
答:被抽查的學(xué)生中得分為80分的至少有11人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB∥DE,∠1=∠2,試說明AE∥DC.下面是解答過程,請你填空或填寫理由.
解:∵AB∥DE(已知)∴∠1= ( )
又∵∠1=∠2 (已知)∴∠2= (等量代換)
∴AE∥DC.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時間為x(x大于0)秒.
(1)點(diǎn)C表示的數(shù)是 ;
(2)當(dāng)x= 秒時,點(diǎn)P到達(dá)點(diǎn)A處?
(3)運(yùn)動過程中點(diǎn)P表示的數(shù)是 (用含字母x的式子表示);
(4)當(dāng)P,C之間的距離為2個單位長度時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個單位長度的速度向A運(yùn)動;點(diǎn)N從B同時出發(fā),以每秒1個單位長度的速度向C運(yùn)動.其中一個動點(diǎn)到達(dá)終點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn)(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時,S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣3x+3與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點(diǎn)C落在雙曲線y= (k≠0)上,將正方形ABCD沿x軸負(fù)方向平移a個單位長度,使點(diǎn)D恰好落在雙曲線y= (k≠0)上的點(diǎn)D1處,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=kx+b平行于直線y=x﹣1,且與直線l2: 相交于點(diǎn)P(﹣1,0).
(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點(diǎn)A.一動點(diǎn)C從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動,到達(dá)直線l2上的點(diǎn)B1處后,改為垂直于x軸的方向運(yùn)動,到達(dá)直線l1上的點(diǎn)A1處后,再沿平行于x軸的方向運(yùn)動,到達(dá)直線l2上的點(diǎn)B2處后,又改為垂直于x軸的方向運(yùn)動,到達(dá)直線l1上的點(diǎn)A2處后,仍沿平行于x軸的方向運(yùn)動,…
照此規(guī)律運(yùn)動,動點(diǎn)C依次經(jīng)過點(diǎn)B1 , A1 , B2 , A2 , B3 , A3 , …,Bn , An , …
①求點(diǎn)B1 , B2 , A1 , A2的坐標(biāo);
②請你通過歸納得出點(diǎn)An、Bn的坐標(biāo);并求當(dāng)動點(diǎn)C到達(dá)An處時,運(yùn)動的總路徑的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D,E,AD,CE相交于點(diǎn)H,已知EH=EB=6,AE=8,則CH的長是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長稱為P,Q的“實(shí)際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實(shí)際距離”為5,即PS+SQ=5或PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個小區(qū)的坐標(biāo)分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點(diǎn)M表示單車停放點(diǎn),且滿足M到A,B,C的“實(shí)際距離”相等,則點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸的正半軸相交,頂點(diǎn)在第四象限,對稱軸為x=1,下列結(jié)論:①b<0;②a+b<0;③ <﹣2;④an2+bn=a(2﹣n)2+b(2﹣n)(n為任意實(shí)數(shù)),其中正確的結(jié)論個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com