【題目】如圖,△ABC 是等邊三角形,BD 是 AC 邊上的高,延長(zhǎng) BC 到 E使 CE=CD,則圖中等腰三角形的個(gè)數(shù)是()
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC至E,CE=CD,
(1)求證:DB=DE
(2)在圖中過D作DF⊥BE交BE于F,若CF=4,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沅陵一中有360張舊棵桌需維修,經(jīng)過甲、乙兩個(gè)維修小組的競(jìng)標(biāo)得知,甲組工作效率是乙組的1.5倍,且甲組單獨(dú)維修完這批舊課桌比乙組單獨(dú)維修完這批舊課桌少用5天;已知甲組每天需要付工資800元,乙組每天需要付工資400元;
(1)求甲、乙兩個(gè)小組每天各維修多少?gòu)埮f棵桌?
(2)學(xué)校維修這批舊課桌預(yù)算資金不超過7000元,時(shí)間不超過12天,請(qǐng)你幫學(xué)校算一算有幾種維修方案(天數(shù)不足1天的按1天算);每種方案需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點(diǎn).
(1)如圖,E、F分別是AB、AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形.
(2)若E、F分別為AB,CA延長(zhǎng)線上的點(diǎn),仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?畫出圖形,寫出結(jié)論不證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax+bx+c與x軸負(fù)半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OB=,CB=2,∠CAO=30°,求拋物線的解析式和它的頂點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中有1個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球,記錄顏色后放回,攪勻,再?gòu)闹腥我饷?/span>1個(gè)球,像這樣有放回地先后摸球2次.摸出紅球得2分,摸出黑球得1分.
(1)第一次摸出黑球的概率是多少?
(2)兩次摸球所得總分為4分的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出4件,若商場(chǎng)平均每天盈利2100元,每件襯衫應(yīng)降價(jià)多少元?請(qǐng)完成下列問題:
(1)未降價(jià)之前,某商場(chǎng)襯衫的總盈利為 元.
(2)降價(jià)后,設(shè)某商場(chǎng)每件襯衫應(yīng)降價(jià)x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進(jìn)行表示)
(3)請(qǐng)列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,延長(zhǎng)AC到E,C為線段AE上的一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,OC. 以下五個(gè)結(jié)論:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;結(jié)論正確的有_________(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com