【題目】某商場計劃一次性購進、兩種型號洗衣機80臺,若購進型號洗衣機50臺、型號洗衣機30臺,則需55000元;若購進型號洗衣機30臺、型號洗衣機50臺,則需6500元.

(1)、兩種型號的洗衣機的進價各為多少元;

(2)若每臺A型號洗衣機售價550元,每臺B型號洗衣機售價1080元,該商場計劃銷售完這80臺洗衣機總利潤不少于5200元,求最多購進型號洗衣機多少臺?

【答案】(1)兩種型號的洗衣機的進價分別為500/臺,1000/臺;(2)最多購進型號洗衣機40臺.

【解析】

1)設A、B兩種型號的洗衣機的進價分別為x/臺,y/臺,由總價=單價×數(shù)量,列出方程組可求解;

2)設最多購進A型號洗衣機m臺,B型號洗衣機(80-m)臺,根據(jù)銷售完這80臺洗衣機總利潤不少于5200元,列出不等式解答即可.

(1)兩種型號的洗衣機的進價分別為/臺,/臺,

根據(jù)題意得:

解得:

答:兩種型號的洗衣機的進價分別為500/臺,1000/臺,

(2)設最多購進型號洗衣機臺,型號洗衣機臺,,

根據(jù)題意得:

解得:

最大

答:最多購進型號洗衣機40臺.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC的面積為24,點D在線段AC上,點D在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD.

(1)如圖①,若∠ABE30°,∠BEC148°,求∠ECD的度數(shù);

(2)如圖②,若CFEB,CF平分∠ECD,試探究∠ECD與∠ABE之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷△ABC的形狀,證明你的結論;

(3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BPABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+P=

A.70°B.80°C.90°D.100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A(a,0),C(0,c)且滿足:(a+6)2+0,長方形ABCO在坐標系中(如圖),點O為坐標系的原點.

(1)求點B的坐標.

(2)如圖1,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點O),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

(3)如圖2,Ex軸負半軸上一點,且∠CBE=∠CEB,Fx軸正半軸上一動點,∠ECF的平分線CDBE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點,G、H分別是對角線BD、AC的中點.

(1)求證:四邊形EGFH是菱形;

(2)若AB=1,則當ABC+DCB=90°時,求四邊形EGFH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明解不等式的過程如圖,請指出他解答過程中錯誤步驟的序號并寫出正確的解答過程.

解:去分母,3(1x)2(2x1)≤1.

去括號33x4x1≤1.

移項,3x4x≤131.

合并同類項,得-x≤3.

兩邊都除以-1,x≤3.

查看答案和解析>>

同步練習冊答案