【題目】已知等腰△ABC中,AB=AC,ABC的平分線交ACD,過點(diǎn)AAE // BCBD的延長線于點(diǎn)E,∠CAE的平分線交BE于點(diǎn)F.

(1)①如圖,若∠BAC=36o,求證:BD=EF;

②如圖,若∠BAC=60o,求的值;

(2)如圖,若∠BAC=60o,過點(diǎn)DDG// BC,交AB于點(diǎn)G,點(diǎn)NBC中點(diǎn),點(diǎn)P, M分別是GD, BG上的動(dòng)點(diǎn),且∠PNM=60°. 求證:AP=PN=MN.

【答案】1)①見解析;②;(2)見解析.

【解析】

1)①如圖1,根據(jù)題意可依次求得∠1=E=3=36°,∠2=4=72°,再根據(jù)等腰三角形的判定和等量代換即得結(jié)論;

②如圖2,根據(jù)AB=AC,∠BAC=60°可得△ABC是等邊三角形,根據(jù)AE // BCBD是∠ABC的平分線,可得AB=AE,進(jìn)一步即可求得∠1=3=E=30°,然后利用30°角的直角三角形的性質(zhì)可得BDAB、EFAE的關(guān)系,問題即得解決.

2)如圖3,連接DN、GN,根據(jù)題意易得△ADG、△BNG、△GDN為全等的等邊三角形,然后利用SAS可證△AGP≌△NGP,從而可得AP=NP,再根據(jù)ASA可證△GMN≌△DPN,從而可得MN=PN,問題即得解決.

解:(1)①證明:如圖1,∵AB=AC,∠BAC=36°,∴∠ABC=ACB==72°,

BD是∠ABC的平分線,∴

,∴BD=AD,

AE // BC,∴,

,

AF平分∠DAE,∴,

∠3=∠E,

AF=EF,,

,∴AD=AF

BD=EF;

②如圖2,∵AB=AC,∠BAC=60°,∴△ABC是等邊三角形,

∴∠ABC=ACB=60°,

BD是∠ABC的平分線,∴,BDAC

,∴

AE // BC,∴,

,∴AB=AE

AF平分∠CAE,∴,

,∴FA=FE,

過點(diǎn)FFGAEG,則

在直角△EFG中,∵,∴,,

,∴

;

2)連接DNGN,如圖3,∵AB=AC,∠BAC=60°,∴△ABC是等邊三角形,

由上一小題知:DAC中點(diǎn),∵DG// BC,∴GAB中點(diǎn),

又因?yàn)辄c(diǎn)NBC中點(diǎn),則△ADG、△BNG、△GDN為全等的等邊三角形,

AG=GN,∠AGP=NGP=60°,

又∵GP=GP,

∴△AGP≌△NGPSAS),

AP=NP,

∵∠MNP=GND=60°,∴∠MNG=PND,

又∵GN=DN,∠MGN=PDN=60°

∴△GMN≌△DPNASA),

MN=PN,

AP=PN=MN.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會(huì),該籌委會(huì)動(dòng)員居民自愿集資建立一個(gè)書刊閱覽室.經(jīng)預(yù)算,一共需要籌資30 000元,其中一部分用于購買書桌、書架等設(shè)施,另一部分用于購買書刊.

(1)籌委會(huì)計(jì)劃,購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍,問最多用多少資金購買書桌、書架等設(shè)施?

(2)經(jīng)初步統(tǒng)計(jì),有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈(zèng)送了一批閱覽室設(shè)施和書籍,這樣,只需參與戶共集資20 000元.經(jīng)籌委會(huì)進(jìn)一步宣傳,自愿參與的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中).則每戶平均集資的資金在150元的基礎(chǔ)上減少了%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仙降是瑞安重要的制鞋基地,其生產(chǎn)的鞋子暢銷世界各地,某制鞋企業(yè)欲將件產(chǎn)品運(yùn)往三地銷售,運(yùn)往地的費(fèi)用為18/件,運(yùn)往地的費(fèi)用為20/件,運(yùn)往地的費(fèi)用為17/件,要求運(yùn)往地的件數(shù)與運(yùn)往地的件數(shù)相同. 設(shè)安排件產(chǎn)品運(yùn)往地.

1)若①運(yùn)往地件數(shù)為 件(用含的代數(shù)式表示);②若總運(yùn)費(fèi)不超過1850元,則運(yùn)往地至少有多少件?

2)若總運(yùn)費(fèi)為1900元,則的最大值為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點(diǎn)MN;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)P③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn),經(jīng)過CCD⊥AB于點(diǎn)D,CF⊙O的切線,過點(diǎn)AAE⊥CFE,連接AC.

(1)求證:AE=AD.

(2)AE=3,CD=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+與y=-x2+k的圖象的頂點(diǎn)重合,則下列結(jié)論不正確的是( )

A. 這兩個(gè)函數(shù)圖象有相同的對稱軸 B. 這兩個(gè)函數(shù)圖象的開口方向相反

C. 方程-x2+k=0沒有實(shí)數(shù)根 D. 二次函數(shù)y=-x2+k的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,點(diǎn)ECD上一點(diǎn),AE平分∠BAD,BF平分∠ABC,延長BEAD的延長線于點(diǎn)F

1)求證:△ABE≌△AFE;

2)若AD2BC6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,ECF是等腰直角三角形,其中CE=CFGCDEF的交點(diǎn).

1)求證:BCF≌△DCE;

2)若BC=5CF=3,BFC=90°,求DGGC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

當(dāng)拋物線的頂點(diǎn)在軸上時(shí),求該拋物線的解析式;

不論取何值時(shí),拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;

若有兩點(diǎn),且該拋物線與線段始終有交點(diǎn),請直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案