【題目】如圖,直線y=-x+6與反比例函數(shù)y=(x>0)的圖象交于A(3-,a)和B兩點.
(1)求k的值;
(2)直線x=m與直線AB相交于點M,與反比例函數(shù)的圖象相交于點N.若MN=1,求m的值;
(3)直接寫出不等式>x的解集.
【答案】(1)k=4;(2);(3)
【解析】分析:(1)把點A代入直線y=-x+6,求得a的值,得出A的坐標(biāo),把A的坐標(biāo)代入反比例函數(shù)y=,即可得到k的值;
(2)設(shè)M(m,-m+6),N(m,).分兩種情況表示出MN,解方程即可.
(3)設(shè)6+x=m,則x=m-6,得到>-m+6,解方程組:,得到反比例函數(shù)y=與一次函數(shù)y=-m+6的交點坐標(biāo),從而得出函數(shù)y=與y=x的交點坐標(biāo),即可得出結(jié)論.
詳解:(1)∵點A(3-,a)在直線y=-x+6與反比例函數(shù)y=(x>0)的圖象上,
∴-3++6=a,
∴a=3-,
∴k=(3+)×(3-)=4
(2)設(shè)M(m,-m+6),N(m,).
當(dāng)M在N上方時,MN=-m+6-=1,解得:m=1或4;
當(dāng)M在N下方時,MN=
(3)設(shè)6+x=m,則x=m-6,∴>-m+6,解方程組:,得:,,反比例函數(shù)y=與一次函數(shù)y=-m+6的交點是( ,),(,),∴函數(shù)y=與y=x的交點為(,)和(,),∴不等式>x的解集或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,D 是 AC 邊上一動點, CE⊥BD 于 E.
(1)如圖(1),若 BD 平分∠ABC 時,①求∠ECD 的度數(shù);②求證:BD=2EC;
(2)如圖(2),過點 A 作 AF⊥BE 于點 F,猜想線段 BE,CE,AF 之間的數(shù)量關(guān)系并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E、F分別為邊AB、BC、CA的中點.
(1)求證:四邊形DECF是平行四邊形.
(2)當(dāng)AC、BC滿足何條件時,四邊形DECF為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與x、y軸分別交于點A(2,0),B(0,4).
(1)求該函數(shù)的解析式;
(2)O為坐標(biāo)原點,設(shè)OA、AB的中點分別為C、D,P為OB上一動點,求PC+PD的最小值,并求取得最小值時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=- +mx+m+與x軸相交于點A、B(點A在B的左側(cè))與y軸相交于點C,頂點D在第一象限.
(1)求頂點D的坐標(biāo)(用m 的代數(shù)式表示);
(2)當(dāng)60°≤∠ADB≤90°時,求m的變化范圍;
(3)當(dāng)△BCD的面積與△ABC的面積相等時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,AB表示A點和B點之間的距離,且a、b滿足|a+4|+|b+3a|=0.
(1)求A、B兩點之間的距離;
(2)若在數(shù)軸上存在一點C,且AC+BC=19,求C點表示的數(shù);
(3)如圖2,若在原點O處放一擋板,一小球甲從點A處以2個單位/秒的速度向左運動;兩秒后另一個小球乙從點B處以3個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看做一點)乙球以4個單位/秒的速度向相反方向運動,設(shè)甲球運動的時間為t(秒).
①分別表示甲、乙兩小球到原點的距離(用含t的式子表示);
②求甲、乙兩小球到原點的距離相等時,甲球所在位置對應(yīng)的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊含有角的直角三角板如圖放置,直角頂點的坐標(biāo)為,頂點的坐標(biāo)為,頂點恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿軸正方向平移,當(dāng)頂點恰好落在該雙曲線上時停止運動,則此時點的對應(yīng)點的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃銷售A,B兩種型號的商品,經(jīng)調(diào)查,用1500元采購A型商品的件數(shù)是用600元采購B型商品的件數(shù)的2倍,一件A型商品的進(jìn)價比一件B型商品的進(jìn)價多30元.
(1)求一件A,B型商品的進(jìn)價分別為多少元?
(2)若該商場購進(jìn)A,B型商品共100件進(jìn)行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),已知A型商品的售價為200元/件,B型商品的售價為180元/件,且全部能售出,求該商品能獲得的利潤最小是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com