【題目】如圖,在平行四邊形紙片中,,將紙片沿對角線對折,邊與邊交于點,此時,恰為等邊三角形,則重疊面積為( )
A.B.C.D.
【答案】C
【解析】
由△CDE為等邊三角形,可知DE=DC=EC,∠D=60°,根據折疊的性質,可知∠BCA=∠ECA,又AD∥BC,可知AE=EC,可知∠DAC=30°,故∠ACD=90°,由BC=AD=4,則CD=2,AC=6,故S△ACE=S△ACD=×ACCD.
∵△CDE為等邊三角形,
∴DE=DC=EC,∠D=60°,
根據折疊的性質,∠BCA=∠ECA,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠EAC=∠BCA,
∴∠EAC=∠ECA,
∴EA=EC,
∴∠DAC=30°,
∴∠ACD=90°,
∴CD=AD=2,AC=6,
∴S△ACE=S△ACD=×ACCD=×6×2=3.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,是一個被等分成8個扇形的轉盤.請在扇形內寫上“紅、黑”表示涂上相應的顏色,未寫表示白色,使得自由轉動停止后,指針落在紅色區(qū)域的概率等于落在黑色區(qū)域的概率,且小于落在白色區(qū)域的概率.填出兩種,再指出“紅、黑,白”分別是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B=90°,AB=6cm,BC=12cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動。如果P、Q分別從A、B同時出發(fā),設運動時間為t.
求:(1)當t為何值時,△PBQ的面積等于8cm2?
(2)當t為何值時,△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一不透明口袋中裝有大小形狀完全相同的2個黑球和2個白球,先從口袋中模出一個球,不放回,再從口袋中摸出另一個球,則摸出的兩個球顏色不相同的概率為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數y=y1y2,其中y1=+1,y2=x﹣1,請對該函數及其圖象進行如下探究:
解析式探究:根據給定的條件,可以確定出該函數的解析式為:______.
函數圖象探究:①根據解析式,完成下表:
x | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | ﹣9 | ﹣ | m | n | ﹣1 | ﹣ | … |
m=______,n=_____.
②根據表中數據,在如圖所示的平面直角坐標系中描點,并畫出當x≤0時的函數圖象;
結合畫出的函數圖象,解決問題:
①若A(x1,y1)、B(x2,y2)為圖象上的兩點,滿足x1<x2;則y1_____y2(用<、=、>填空).
②寫出關于x的方程y1y2=﹣x+3的近似解(精確到0.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校的一個數學興趣小組在本校學生中開展主題為“買房知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,分別記作、、、;并根據調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:
(1)求本次被調查的學生共有多少人?并將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(2)在“比較了解”的調查結果里,初三年級學生共有5人,其中2男3女,在這5人中,打算隨機選出2位進行采訪,請你用列表法或樹狀圖的方法求出所選兩位同學至少有一位是男同學的概率?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內,△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)畫出△ABC繞O點順時針旋轉90°后的△A2B2C2;
(3)在(2)的條件下,求點C劃過的路徑長度(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在東西方向的海岸線兩艘船,均收到已觸礁擱淺的船的求救信號,已知船在船的北偏東58°方向,船在船的北偏西35°方向,且的距離為30海里.觀察圖形并回答問題:(參考數據:,,,,,)
(1)求船到海岸線的距離(精確到0.1海里);
(2)若船、船分別以20海里/小時、15海里/小時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船處.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com