【題目】如圖1所示,在四邊形ABCD中,點(diǎn)O,E,F(xiàn),G分別是AB,BC,CD,AD的中點(diǎn),連接OE,EF,F(xiàn)G,GO,GE.
(1)證明:四邊形OEFG是平行四邊形;
(2)將△OGE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OMN,如圖2所示,連接GM,EN.
①若OE=,OG=1,求的值;
②試在四邊形ABCD中添加一個(gè)條件,使GM,EN的長(zhǎng)在旋轉(zhuǎn)過(guò)程中始終相等.(不要求證明)
【答案】(1)證明見(jiàn)解析;(2)①;②添加AC=BD.
【解析】(1)連接AC,由四個(gè)中點(diǎn)可知OE∥AC、OE=AC,GF∥AC、GF=AC,據(jù)此得出OE=GF、OE//GF,即可得證;
(2)①由旋轉(zhuǎn)性質(zhì)知OG=OM、OE=ON,∠GOM=∠EON,據(jù)此可證△OGM∽△OEN得;
②連接AC、BD,根據(jù)①知△OGM∽△OEN,若要GM=EN只需使△OGM≌△OEN,添加使AC=BD的條件均可以滿足此條件.
(1)如圖1,連接AC,
∵點(diǎn)O、E、F、G分別是AB、BC、CD、AD的中點(diǎn),
∴OE∥AC、OE=AC,GF∥AC、GF=AC,
∴OE=GF,OE//GF,
∴四邊形OEFG是平行四邊形;
(2)①∵△OGE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OMN,
∴OG=OM、OE=ON,∠GOM=∠EON,
∴,
∴△OGM∽△OEN,
∴;
②添加AC=BD,
如圖2,連接AC、BD,
∵點(diǎn)O、E、F、G分別是AB、BC、CD、AD的中點(diǎn),
∴OG=EF=BD、OE=GF=BD,
∵AC=BD,
∴OG=OE,
∵△OGE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OMN,
∴OG=OM、OE=ON,∠GOM=∠EON,
∴OG=OE、OM=ON,
在△OGM和△OEN中,
,
∴△OGM≌△OEN(SAS),
∴GM=EN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)C出發(fā).以每秒1個(gè)單位長(zhǎng)度的速度沿CB勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,
(1)當(dāng)t為何值時(shí),四邊形OCPQ為矩形?
(2)當(dāng)t為何值時(shí),以C,P,Q,A為頂點(diǎn)的四邊形為平行四邊形?
(3)E點(diǎn)坐標(biāo)(5,0),當(dāng)△OEP為等腰三角形時(shí),請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料
在數(shù)學(xué)課上,老師提出如下問(wèn)題:
己知:已知:Rt△ABC,∠ABC=90°.
求作:矩形ABCD.
小敏的作法如下:
①以A為圓心,BC長(zhǎng)為半徑作弧,以C為圓心,AB長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)D;
②連接DA、DC;所以四邊形ABCD為所求矩形.
老師說(shuō):“小敏的作法正確.”
請(qǐng)回答:小敏的作法正確的理由是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.
(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);
(2)如圖2,將拋物線C1向下平移k(k>0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:
(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與△AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為選拔一名選手參加“美麗邵陽(yáng),我為家鄉(xiāng)做代言”主題演講比賽,經(jīng)研究,按圖所示的項(xiàng)目和權(quán)數(shù)對(duì)選拔賽參賽選手進(jìn)行考評(píng)(因排版原因統(tǒng)計(jì)圖不完整).下表是李明、張華在選拔賽中的得分情況:
項(xiàng)目 選手 | 服裝 | 普通話 | 主題 | 演講技巧 |
李明 | 85 | 70 | 80 | 85 |
張華 | 90 | 75 | 75 | 80 |
結(jié)合以上信息,回答下列問(wèn)題:
(1)求服裝項(xiàng)目的權(quán)數(shù)及普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角大;
(2)求李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)根據(jù)你所學(xué)的知識(shí),幫助學(xué)校在李明、張華兩人中選擇一人參加“美麗邵陽(yáng),我為家鄉(xiāng)做代言”主題演講比賽,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小明坐公交車到濱海公園游玩,他從家出發(fā)0.8小時(shí)候達(dá)到中心書城,逗留一段時(shí)間后繼續(xù)坐公交車到濱海公園,小明離家一段時(shí)間后,爸爸駕車沿相同的路線前往海濱公園,并比小明早到達(dá),已知爸爸的平均速度是小明從家到中心書城平均速度的兩倍.如圖是他們離家路程s(km)與小明離家時(shí)間t(h)的關(guān)系圖,請(qǐng)根據(jù)圖回答下列問(wèn)題:
(1)小明家到濱海公園的路程為 km,小明在中心書城逗留的時(shí)間為 h;
(2)小明從中心書城到濱海公園的平均速度是 km/h,
(3)小明爸爸比小明早到達(dá)多長(zhǎng)時(shí)間?
(4)爸爸駕車經(jīng)過(guò)多長(zhǎng)時(shí)間追上小明?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在長(zhǎng)方形ABCD中,AB=12cm,BC=10cm,點(diǎn)P從A出發(fā),沿A→B→C→D的路線運(yùn)動(dòng),到D停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動(dòng),到A點(diǎn)停止.若P、Q兩點(diǎn)同時(shí)出發(fā),速度分別為每秒lcm、2cm,a秒時(shí)P、Q兩點(diǎn)同時(shí)改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動(dòng)時(shí)間x(秒)的圖象.
(1)求出a值;
(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請(qǐng)分別求出改變速度后,y1、y2和運(yùn)動(dòng)時(shí)間x(秒)的關(guān)系式;
(3)求P、Q兩點(diǎn)都在BC邊上,x為何值時(shí)P、Q兩點(diǎn)相距3cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(-2,0)、(0,4).動(dòng)點(diǎn)P從O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C以每秒2個(gè)單位的速度在y軸上從點(diǎn)B出發(fā)運(yùn)動(dòng)到點(diǎn)O停止,點(diǎn)C停止運(yùn)動(dòng)時(shí)點(diǎn)P也隨之停止運(yùn)動(dòng).以CP、CO為鄰邊構(gòu)造□PCOD,在線段OP的延長(zhǎng)線長(zhǎng)取點(diǎn)E,使得PE=2.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求證:四邊形ADEC是平行四邊形;
(2)以線段PE為對(duì)角線作正方形MPNE,點(diǎn)M、N分別在第一、四象限.
①當(dāng)點(diǎn)M、N中有一點(diǎn)落在四邊形ADEC的邊上時(shí),求出所有滿足條件的t的值;
②若點(diǎn)M、N中恰好只有一點(diǎn)落在四邊形ADEC的內(nèi)部(不包括邊界)時(shí),設(shè)□PCOD的面積為S,直接寫出S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知AB是⊙O 的直徑,C是⊙O 上一點(diǎn),∠ACB的平分線交⊙O 于點(diǎn)D,作PD∥AB,交CA的延長(zhǎng)線于點(diǎn)P.連結(jié)AD,BD.
求證:(1)PD是⊙O 的切線;
(2)△PAD△DBC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com