【題目】閱讀下面材料

在數(shù)學課上,老師提出如下問題:

己知:已知:RtABC,ABC=90°.

求作:矩形ABCD.

小敏的作法如下:

①以A為圓心,BC長為半徑作弧,以C為圓心,AB長為半徑作弧,兩弧相交于點D;

②連接DA、DC;所以四邊形ABCD為所求矩形.

老師說:“小敏的作法正確.”

請回答:小敏的作法正確的理由是____________________.

【答案】有一個角是直角的平行四邊形是矩形

【解析】

直接利用基本作圖方法得出四邊形ABCD是平行四邊形,進而利用矩形的判定方法得出答案.

①以A為圓心,BC長為半徑作弧,以C為圓心,AB長為半徑作弧,兩弧相交于點D;
②連接DADC;所以四邊形ABCD為所求矩形.
理由:∵AD=BC,AB=DC,
∴四邊形ABCD是平行四邊形,
∵∠B=90°,
∴平行四邊形ABCD是矩形.
故答案為:有一個角是直角的平行四邊形是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸分別交于原點和點,與對稱軸交于點.矩形的邊軸正半軸上,且,邊與拋物線分別交于點,.當矩形沿軸正方向平移,點,位于對稱軸的同側時,連接,此時,四邊形的面積記為;點,位于對稱軸的兩側時,連接,,此時五邊形的面積記為.將點與點重合的位置作為矩形平移的起點,設矩形平移的長度為.

(1)求出這條拋物線的表達式;

(2)當時,求的值;

(3)當矩形沿著軸的正方向平移時,求關于的函數(shù)表達式,并求出為何值時,有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高市民的環(huán)保意識,倡導節(jié)能減排,綠色出行,某市計劃在城區(qū)投放一批共享單車這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.

(1)今年年初,共享單車試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?

(2)試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,將陰影部分剪下,拼成右邊的矩形,由圖形①到圖形②的變化過程能夠驗證的一個等式是( 。

A. a(a+b)=a2+ab B. a2﹣b2=(a+b)(a﹣b)

C. (a+b)2=a2+2ab+b2 D. a(a﹣b)=a2﹣ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別用火柴棍連續(xù)搭建正三角形和正六邊形,公共邊只用一根火柴棍.如果搭建正三角形和正六邊形共用了2018根火柴棍,并且正三角形的個數(shù)比正六邊形的個數(shù)多7個,那么能連續(xù)搭建正三角形的個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形CEFG是兩個邊長分別為a,b的正方形.

1)用含a,b的代數(shù)式表示三角形BGF的面積;(2)當,時,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:,,,…,則第8個等式是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,在四邊形ABCD中,點O,E,F(xiàn),G分別是AB,BC,CD,AD的中點,連接OE,EF,F(xiàn)G,GO,GE.

(1)證明:四邊形OEFG是平行四邊形;

(2)將△OGE繞點O順時針旋轉得到△OMN,如圖2所示,連接GM,EN.

OE=,OG=1,求的值;

試在四邊形ABCD中添加一個條件,使GM,EN的長在旋轉過程中始終相等.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司員工分別住在三個住宅區(qū),區(qū)有人,區(qū)有人,區(qū)有人.三個區(qū)在一條直線上,位置如圖所示.公司的接送打算在此間只設一個停靠點,要使所有員工步行到?奎c的路程總和最少,那么停靠點的位置應在(

A.區(qū)B.區(qū)C.區(qū)D.不確定

查看答案和解析>>

同步練習冊答案