【題目】已知:如圖,,那么成立嗎?為什么?下面是小麗同學(xué)進(jìn)行的推理,請你將小麗同學(xué)的推理過程補充完整.

解:成立,理由如下:

(已知)

(同旁內(nèi)角互補,兩條直線平行)

(②

(已知),(等量代換)

(③

(④ ).

【答案】ABCD;兩直線平行,同位角相等;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等.

【解析】

根據(jù)平行線的判定推出ABCD,根據(jù)平行線的性質(zhì)和已知得出∠DCE=∠D,推出ADBE,根據(jù)平行線的性質(zhì)推出即可.

ABCD(同旁內(nèi)角互補,兩直線平行),

∴∠B=∠DCE(兩直線平行,同位角相等),

∵∠B=∠D,

∴∠DCE=∠D

ADBE(內(nèi)錯角相等,兩直線平行),

∴∠E=∠DFE(兩直線平行,內(nèi)錯角相等),

故答案為:ABCD;兩直線平行,同位角相等;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若ABC內(nèi)一點P滿足∠PAC=PCB=PBA,則稱點PABC的布羅卡爾點,三角形的布羅卡爾點是法國數(shù)學(xué)家和數(shù)學(xué)教育家克雷爾首次發(fā)現(xiàn),后來被數(shù)學(xué)愛好者法國軍官布羅卡爾重新發(fā)現(xiàn),并用他的名字命名,布羅卡爾點的再次發(fā)現(xiàn),引發(fā)了研究三角形幾何的熱潮.已知ABC中,CA=CB,∠ACB=120°,PABC的布羅卡爾點,若PA=,則PB+PC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時,梯子的底端B離墻底C的距離BC0.7m.

(1)求此時梯子的頂端A距地面的高度AC;

(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動了多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABD和△BCD都是等邊三角形,E、F分別是邊ADCD上的點,且DECF,連接BE、EFFB

求證:(1)△ABE≌△DBF;

2)△BEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】年“雙十—”來臨之際,某網(wǎng)點以每件元的價格購進(jìn)件襯衫以每件元的價格迅速售罄,所以該網(wǎng)店第二個月再次購進(jìn)一批同款襯衫迎接“雙十一”,與第一批襯衫相比,這批襯衫的進(jìn)價和數(shù)量都有一定的提高,其數(shù)量的增長率是進(jìn)價增長率的倍,該批襯衫仍以每件元銷售,十二月十二日下午六點,商店對剩余的件襯衫以每件的價格一次性清倉銷售,商店出售這兩批襯衫共盈利元,設(shè)第二批襯衫進(jìn)價的增長率為

1)第二批襯衫進(jìn)價為____________元,購進(jìn)的數(shù)量為_____________件.(都用含的代數(shù)式表示)

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坡頂處的同一水平面上有一座古塔,數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求古塔的高度.(結(jié)果精確到米,參考數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當(dāng)點P在線段AB上時,求證:APQ∽△ABC;

(2)當(dāng)PQB為等腰三角形時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖為她們剌繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成的,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),研究發(fā)現(xiàn)第個圖案中共有個;小正方形.(為整數(shù),且)

1)請寫出第個圖案中有____個小正方形;

2)猜想第個圖案和第個圖案中小正方形個數(shù)之差為

3)證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點是等腰直角三角形斜邊上的中點,,上一點,連結(jié)

1)如圖1,若點在線段上,過點,垂足為,交于點,求證:;

2)如圖2,若點延長線上,,垂足為,交的延長線于點,其它條件不變,則結(jié)論“還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案