【題目】如圖,CD的直徑,弦ABCD于點(diǎn)G,直線EF相切與點(diǎn)D,則下列結(jié)論中不一定正確的是

AAG=BG BABEF CADBC DABC=ADC

【答案】C

【解析】根據(jù)垂徑定理,切線的性質(zhì),平行的判定,圓周角定理逐一作出判斷:

ACD的直徑,弦ABCD于點(diǎn)G,由垂徑定理可知:AG=BG。結(jié)論正確。

B直線EF相切與點(diǎn)D,EFAD。ABEF。結(jié)論正確。

C)要ADBC,即要ABC=BAD,由圓周角定理,ABC=ADC,即要BAD =ADC,即要AG=DG,但沒此條件。結(jié)論錯誤。

D∵∠ABCADC是同弧所對的圓周角,∴∠ABC=ADC。結(jié)論正確。

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,OABC的內(nèi)切圓,三個切點(diǎn)分別為DE、F.若BF=2,AF=3,則ABC的面積是( 。

A. 6 B. 7 C. 12 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個實(shí)數(shù)根.

(1)ABC的周長.

(2)ABC的三邊均為整數(shù)時的外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1x軸交于A(x1 , 0)、B(x2 , 0)兩點(diǎn),且x1<0,x2>0,與y軸交于點(diǎn)C,頂點(diǎn)為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實(shí)根,則x1+x2=﹣ ,x1x2=

(1)m的取值范圍;

(2)OA=3OB,求拋物線的解析式;

(3)(2)中拋物線的對稱軸PD上,存在點(diǎn)Q使得△BQC的周長最短,試求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數(shù),其中x1>x2,且滿足1<x1﹣x2<2,那么稱這個方程有友好根”.

(1)方程(x﹣)(x﹣)=0_____友好根(填:“沒有”);

(2)已知關(guān)于x x2﹣(t﹣1)x+t﹣2=0友好根,求 t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是ABC的角平分線,O經(jīng)過A、B、D三點(diǎn),過點(diǎn)B作BEAD,交O于點(diǎn)E,連接ED.

(1)求證:EDAC;

(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向 A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中間用相同的白色正方形瓷磚,四周用相同的黑色長方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答下列問題.

(1)問:依據(jù)規(guī)律在第6個圖中,黑色瓷磚多少塊,白色瓷磚有多少塊;

(2)某新學(xué)校教室要裝修,每間教室面積為68m2準(zhǔn)備定制邊長為0.5米的正方形白色瓷磚和長為0.5米、寬為0.25米的長方形黑色瓷磚來鋪地面.按照此圖案方式進(jìn)行裝修,瓷磚無須切割,恰好完成鋪設(shè).已知白色瓷磚每塊20元,黑色瓷磚每塊10元,請問每間教室瓷磚共需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,,點(diǎn)是邊上的動點(diǎn)(含端點(diǎn),),連結(jié),以所在直線為對稱軸作點(diǎn)的對稱點(diǎn),連結(jié),,,點(diǎn),分別是線段,,的中點(diǎn),連結(jié),

1)求證:四邊形是菱形;

2)若四邊形的面積為,求的長;

3)以其中兩邊為鄰邊構(gòu)造平行四邊形,當(dāng)所構(gòu)造的平行四邊形恰好是菱形時,這時該菱形的面積是________

查看答案和解析>>

同步練習(xí)冊答案