【題目】如圖,點EFGH分別是四邊形ABCD的邊AB、BC、CDDA的中點.

1)如果圖中線段都可畫成有向線段,那么在這些有向線段所表示的向量中,與向量相等的向量是   ;

2)設,,.試用向量,表示下列向量:   ;   

3)求作:.(請在原圖上作圖,不要求寫作法,但要寫出結論)

【答案】1;(2+、+;(3)如圖所示見解析.

【解析】

1)由中位線定理得EFAC、EF=AC,HGAC、HG=AC,從而知EF=HG,且EFHG,根據(jù)相等向量的定義可得;

2)由可得;

3)由GDC中點知,從而得=,據(jù)此根據(jù)三角形法則作圖即可得.

1EFAB、BC的中點,H、GDA、DC的中點,

EFAC、EFAC,HGAC、HGAC

EFHG,且EFHG

,

故答案為:;

2)由圖知

,

故答案為:;

3)如圖所示:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知∠MON=140°,AOC與∠BOC互余,OC平分∠MOB,

(1)在圖1中,若∠AOC=40°,則∠BOC= °,NOB= °.

(2)在圖1中,設∠AOC=α,NOB=β,請?zhí)骄?/span>αβ之間的數(shù)量關系( 必須寫出推理的主要過程,但每一步后面不必寫出理由);

(3)在已知條件不變的前提下,當∠AOB繞著點O順時針轉動到如圖2的位置,此時αβ之間的數(shù)量關系是否還成立?若成立,請說明理由;若不成立,請直接寫出此時αβ之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上線段AB=2(單位長度),線段CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是-10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個單位長度的速度向右勻速運動,同時線段CD以每秒2個單位長度的速度向左勻速運動.設運動時間為t s.

(1)當點B與點C相遇時,點A、點D在數(shù)軸上表示的數(shù)分別為________;

(2)t為何值時,點B剛好與線段CD的中點重合;

(3)當運動到BC=8(單位長度)時,求出此時點B在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC=4,求ABBC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知識鏈接:

“轉化、化歸思想”是數(shù)學學習中常用的一種探究新知、解決問題的基本的數(shù)學思想方法,通過“轉化、化歸”通?梢詫崿F(xiàn)化未知為已知,化復雜為簡單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長ABE,過點BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結反思:本題通過添加適當?shù)妮o助線,把三角形的三個角之和轉化成了一個平角,利用平角的定義,說明了數(shù)學上的一個重要結論“三角形的三個內角和等于180°.

2)類比探究:請同學們參考圖②,模仿(1)的解決過程試說明“三角形的三個內角和等于180°”

3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內角之和∠A+B+C+D+E= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個底面直徑為5cm,高為16cm圓柱形瓶內裝滿水,再將瓶內的水倒入一個底面直徑為6cm,高為10cm的圓柱形玻璃杯中,能否完全裝下?若裝不下,求瓶內水面還有多高?若未能裝滿,求玻璃杯內水面離杯口的距離?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,D是邊BC上一點,點EF分別是線段AB、AD中點,聯(lián)結CE、CFEF

1)求證:△CEF≌△AEF;

2)聯(lián)結DE,當BD2CD時,求證:AD2DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種關于整數(shù)n“F”運算:

1)當n是奇數(shù)時,結果為

2)當n是偶數(shù)時,結果是(其中是使是奇數(shù)的正整數(shù)),并且運算重復進行.

例如:取,第一次經F運算是29,第二次經F運算是92,第三次經F運算是23,第四次經F運算是74…;若,則第2019次運算結果是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一條直線上有A、BC、D、四點(AB、C三點依次從左到右排列),已知AD=ABAC=4CB,且CD=10cm,求AB的長。

查看答案和解析>>

同步練習冊答案