【題目】某地區(qū)100個家庭收入按從高到低是5800……,10000元各不相同,在輸入計算時,把最大的數(shù)錯誤地輸成100000元,則依據(jù)錯誤的數(shù)據(jù)算出的平均數(shù)比實際平均數(shù)多(

A. 900B. 942C. 90000D. 9000

【答案】A

【解析】

把除家庭收入為10000元的另外99個家庭收入的和當作一個整體,設為a元,那么根據(jù)平均數(shù)的計算公式,分別算出依據(jù)錯誤數(shù)字算出的平均值與實際數(shù)字的平均值,然后相減即可.

設除家庭收入為10000元的另外99個家庭收入的和為a,

把最大的數(shù)10000錯誤地輸成100000元時這100個家庭收入的平均值為 ()

實際這100個家庭收入的平均值為 ()

所以依據(jù)錯誤的數(shù)據(jù)算出的平均數(shù)比實際平均數(shù)多 (),

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,B2,0),A66),M0,6),P點為y軸上一動點。

1)當P點在線段OM上運動時,試問是否存在一個點P使=13,若存在,請求出P點耳朵坐標;若不存在,請說明理由.

2)當點Py的正半軸上運動時(不包括O,M),∠PAM,∠APB,∠PBO三者之間是否存在某種數(shù)量關系,如果有,請利用所學的知識找出并證明;如果沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B,此時從觀測點O處測得該船位于北偏東60°的方向,則該船航行的距離為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中,有兩個不相等實數(shù)根的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,O,B在同一條直線上,∠AOB=90°,∠AOE=DOB,則下列結論:①∠EOD=90°;②∠COE=AOD;③∠AOE+DOC=180;④互余的角有4對.其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D在AB上,在下列四個條件中:①ACD=B;②ADC=ACB;③AC2=ADAB;④ABCD=ADCB,能滿足ADCACB相似的條件是( )

A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,∠C=90°,∠ABC=40°,按以下步驟作圖:

①以點A為圓心,小于AC的長為半徑.畫弧,分別交AB、AC于點E、F;

②分別以點E、F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;

③作射線AG,交BC邊于點D,則∠ADC的度數(shù)為________

【答案】65°

【解析】由題意可知,所作的射線AG是∠BAC的角平分線.

△ABC,∠C=90°,∠ABC=40°,

∴∠BAC=180°-90°-40°=50°,

∴∠CAD=BAC=25°,

∴∠ADC=180°-90°-25°=65°.

型】填空
束】
13

【題目】如圖所示,已知線段AB,∠α,∠β,分別過A、B∠CAB=∠α,∠CBA=∠β.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真閱讀下面關于三角形內外角平分線所夾角的探究片段,完成所提出的問題.

1)如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BOCO的交點,試證明∠BOC90°+

2)如圖2中,O是∠ABC與外角∠ACD的平分線BOCO的交點,試分析∠BOC與∠A有怎樣的關系?請說明理由.

3)如圖3中,O是外角∠DBC與外角∠ECB的平分線BOCO的交點,則∠BOC與∠A有怎樣的關系?(只寫結論,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,四邊形中,,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結果保留根號);

查看答案和解析>>

同步練習冊答案