【題目】關(guān)于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)x1 , x2是方程(k﹣1)x2+2kx+2=0的兩個根,記S= +x1+x2 , S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.

【答案】
(1)

解:當(dāng)k=1時,原方程可化為2x+2=0,解得:x=﹣1,此時該方程有實(shí)根;

當(dāng)k≠1時,方程是一元二次方程,

∵△=(2k)2﹣4(k﹣1)×2

=4k2﹣8k+8

=4(k﹣1)2+4>0,

∴無論k為何實(shí)數(shù),方程總有實(shí)數(shù)根,

綜上所述,無論k為何實(shí)數(shù),方程總有實(shí)數(shù)根.


(2)

解:由根與系數(shù)關(guān)系可知,x1+x2=﹣ ,x1x2=

若S=2,則 +x1+x2=2,即 +x1+x2=2,

將x1+x2、x1x2代入整理得:k2﹣3k+2=0,

解得:k=1(舍)或k=2,

∴S的值能為2,此時k=2.


【解析】本題主要考查一元二次方程的定義、根的判別式、根與系數(shù)的關(guān)系,熟練掌握方程的根與判別式間的聯(lián)系,及根與系數(shù)關(guān)系是解題的關(guān)鍵.(1)分兩種情況討論:①當(dāng)k=1時,方程是一元一次方程,有實(shí)數(shù)根;②當(dāng)k≠1時,方程是一元二次方程,所以證明判別式是非負(fù)數(shù)即可;(2)由韋達(dá)定理得x1+x2=﹣ ,x1x2= ,代入到 +x1+x2=2中,可求得k的值.
【考點(diǎn)精析】利用求根公式和根與系數(shù)的關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實(shí)數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實(shí)數(shù)根3、當(dāng)△<0時,一元二次方程沒有實(shí)數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動.若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時出發(fā),在運(yùn)動過程中,△PBQ的最大面積是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東坡商貿(mào)公司購進(jìn)某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為p= 且其日銷售量y(kg)與時間t(天)的關(guān)系如表:

時間t(天)

1

3

6

10

20

40

日銷售量y(kg)

118

114

108

100

80

40


(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實(shí)際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準(zhǔn)扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=6,O是AB的中點(diǎn),直線l經(jīng)過點(diǎn)O,∠1=120°,P是直線l上一點(diǎn),當(dāng)△APB為直角三角形時,AP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組 ,其解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:( 1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |;
(2)先化簡,再求值:
(a+1﹣ )÷( ),其中a=2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點(diǎn),連接DE,將△ADE沿AB方向平移到△DBF的位置,點(diǎn)D在BC上,已知△ADE的面積為1,則四邊形CEDF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步推廣“陽光體育”大課間活動,某中學(xué)對已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:
(1)請計算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補(bǔ)充完整;
(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊答案