【題目】如圖,AB=6,O是AB的中點(diǎn),直線l經(jīng)過點(diǎn)O,∠1=120°,P是直線l上一點(diǎn),當(dāng)△APB為直角三角形時(shí),AP=

【答案】3或3
【解析】解:當(dāng)∠APB=90°時(shí),分兩種情況討論,
情況一:如圖1,
∵AO=BO,
∴PO=BO,
∵∠1=120°,
∴∠AOP=60°,
∴△AOP為等邊三角形,
∴∠OAP=60°,
∴∠PBA=30°,
∴AP= AB=3;
情況二:如圖2,∵AO=BO,∠APB=90°,
∴PO=BO,
∵∠1=120°,
∴∠BOP=60°,
∴△BOP為等邊三角形,
∴∠OBP=60°,
∴AP=ABsin60°=6× =3 ;
當(dāng)∠BAP=90°時(shí),如圖3,
∵∠1=120°,
∴∠AOP=60°,
∴AP=OAtan∠AOP=3× =3
所以答案是:3或3



【考點(diǎn)精析】本題主要考查了直角三角形斜邊上的中線的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為了答謝顧客,凡在本超市購(gòu)物的顧客,均可憑購(gòu)物小票參與抽獎(jiǎng)活動(dòng),獎(jiǎng)品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎(jiǎng)規(guī)則如下:①如圖,是一個(gè)材質(zhì)均勻可自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個(gè)扇形區(qū)域,每個(gè)區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎(jiǎng)活動(dòng)的顧客可進(jìn)行兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”(當(dāng)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”);③假設(shè)顧客轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”;④當(dāng)顧客完成一次抽獎(jiǎng)活動(dòng)后,記下兩次指針?biāo)竻^(qū)域的兩個(gè)字,只要這兩個(gè)字和獎(jiǎng)品名稱的兩個(gè)字相同(與字的順序無關(guān)),便可獲得相應(yīng)獎(jiǎng)品一瓶;不相同時(shí),不能獲得任何獎(jiǎng)品.
根據(jù)以上規(guī)則,回答下列問題:

(1)求一次“有效隨機(jī)轉(zhuǎn)動(dòng)”可獲得“樂”字的概率;
(2)有一名顧客憑本超市的購(gòu)物小票,參與了一次抽獎(jiǎng)活動(dòng),請(qǐng)你用列表或樹狀圖等方法,求該顧客經(jīng)過兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”后,獲得一瓶可樂的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AD、BC的中點(diǎn),對(duì)角線AC分別交BE,DF于點(diǎn)G、H.求證:AG=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是邊長(zhǎng)為4cm的正方形ABCD的中心,M是BC的中點(diǎn),動(dòng)點(diǎn)P由A開始沿折線A﹣B﹣M方向勻速運(yùn)動(dòng),到M時(shí)停止運(yùn)動(dòng),速度為1cm/s.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t(s),點(diǎn)P的運(yùn)動(dòng)路徑與OA、OP所圍成的圖形面積為S(cm2),則描述面積S(cm2)與時(shí)間t(s)的關(guān)系的圖象可以是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)x1 , x2是方程(k﹣1)x2+2kx+2=0的兩個(gè)根,記S= +x1+x2 , S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=10,AC=2 ,BC邊上的高AD=6,則另一邊BC等于( )
A.10
B.8
C.6或10
D.8或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點(diǎn)D,與直角邊AC相交于E、F兩點(diǎn),連結(jié)DE,已知∠B=30°,⊙O的半徑為12,弧DE的長(zhǎng)度為4π.

(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC.過點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)若⊙O的半徑為 cm,弦BD的長(zhǎng)為3cm,求CF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案