【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,I是△ABC內(nèi)一點(diǎn),AI的延長線交BC于點(diǎn)D,交⊙O于E,連接BE,BI.若IB平分∠ABC,EB=EI.
(1)求證:AE平分∠BAC;
(2)若BA= ,OI⊥AD于I,求CD的長.
【答案】
(1)證明:
∵EB=EI,
∴∠EBI=∠EIB,
∵IB平分∠ABC,
∴∠ABI=∠DBI,
又∠EBI=∠EBD+∠DBI,∠EIB=∠ABI+∠BAI,
∴∠EBD=∠BAI,
又∠EBD=∠CAD,
∴∠BAI=∠CAD,
即AE平分∠BAC
(2)解:
∵OI⊥AD,AB為圓O直徑,
∴∠OIA=∠E=90°,
∴OI∥BE,
∴∠OIB=∠EBI
∵EB=EI,
∴∠EBI=∠EIB,
∴∠OIB=∠DIB,
∵IB平分∠ABC,
∴∠ABI=∠DBI,
在△BDI和△BOI中
∴△BDI≌△BOI(ASA),
∴AO=BO=BD= ,
∴AB=2AO=2
又AI=EI=EB,
∴在Rt△ABE中,由勾股定理可得AB2=BE2+AE2,
即(2 )2=(2AI)2+AI2,解得AI=2,
∴OI=ID= BE= AI=1,
∴AD=AI+DI=2+1=3,
在Rt△ACD中,由勾股定理可得AC2=AD2﹣CD2,
在Rt△ABC中,由勾股定理可得AC2=AB2﹣BC2,
即 ,解得CD=
【解析】(1)由角平分線的定義及等腰三角形的性質(zhì),結(jié)合外角的性質(zhì)可求得∠EBD=∠BAI,再利用同弧所對的圓周角相等可求得∠EBD=∠CAD,從而可證明∠BAI=∠CAD,即AE平分∠BAC;(2)可先證明△BDI≌△BOI,可求得AB、AD、BD的長,分別在Rt△ABC和Rt△ACD中,可得到關(guān)于AC、CD的方程組,可求得CD的長.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD,底面ABCD為矩形,點(diǎn)E,F(xiàn)在側(cè)棱PA,PB上且PE=2EA,PF=2FB,點(diǎn)M為四棱錐內(nèi)任一點(diǎn),則M在平面EFCD上方的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,已知四邊形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且點(diǎn)A為線段SD的中點(diǎn),AD=2DC=1,AB=SD,現(xiàn)將△SAB沿AB進(jìn)行翻折,使得二面角S﹣AB﹣C的大小為90°,得到的圖形如圖(2)所示,連接SC,點(diǎn)E、F分別在線段SB、SC上.
(1)證明:BD⊥AF;
(2)若三棱錐B﹣AEC的體積是四棱錐S﹣ABCD體積的 ,求點(diǎn)E到平面ABCD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A、B兩點(diǎn)對應(yīng)的數(shù)分別為﹣5、15.
(1)點(diǎn)P是數(shù)軸上任意一點(diǎn),且PA=PB,求出點(diǎn)P對應(yīng)的數(shù).
(2)點(diǎn)M、N分別是數(shù)軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度運(yùn)動(dòng),同時(shí),點(diǎn)N從原點(diǎn)O出發(fā)以每秒2個(gè)單位長度的速度運(yùn)動(dòng).
①若M、N兩點(diǎn)都向數(shù)軸正方向運(yùn)動(dòng),經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?
②當(dāng)M、N兩點(diǎn)運(yùn)動(dòng)到AM=2BN時(shí),請直接寫出點(diǎn)M在數(shù)軸上對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件屬于必然事件的是( )
A.姚明罰球線上投籃,投進(jìn)籃筐
B.某種彩票的中獎(jiǎng)率為 ,購買100張彩票一定中獎(jiǎng)
C.擲一次骰子,向上一面的點(diǎn)數(shù)是6
D.367人中至少有兩人的生日在同一天
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,正方形ABCD的對角線長為6,OA=4.若將⊙O繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,⊙O與正方形ABCD的邊只有一個(gè)公共點(diǎn)的情況一共出現(xiàn)( )
A.3次
B.4次
C.5次
D.6次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華和小麗兩人玩數(shù)字游戲,先由小麗心中任意想一個(gè)數(shù)字記為x,再由小華猜小麗剛才想的數(shù)字,把小華猜的數(shù)字記為y,且他們想和猜的數(shù)字只能在1,2,3,4這四個(gè)數(shù)中.
(1)請用樹狀圖或列表法表示了他們想和猜的所有情況;
(2)如果他們想和猜的數(shù)相同,則稱他們“心靈相通”.求他們“心靈相通”的概率;
(3)如果他們想和猜的數(shù)字滿足|x﹣y|≤1,則稱他們“心有靈犀”.求他們“心有靈犀”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明文具廠工人的工作時(shí)間:每月26天,每天8小時(shí).待遇:按件計(jì)酬,多勞多得,每月另加福利工資920元,按月結(jié)算.該廠生產(chǎn)A,B兩種型號(hào)零件,工人每生產(chǎn)一件A種型號(hào)零件,可得報(bào)酬0.85元,每生產(chǎn)一件B種型號(hào)零件,可得報(bào)酬1.5元,下表記錄的是工人小王的工作情況:
生產(chǎn)A種型號(hào)零件/件 | 生產(chǎn)B種型號(hào)零件/件 | 總時(shí)間/分 |
2 | 2 | 70 |
6 | 4 | 170 |
根據(jù)上表提供的信息,請回答如下問題:
(1)小王每生產(chǎn)一件A種型號(hào)零件、每生產(chǎn)一件B種型號(hào)零件,分別需要多少分鐘?
(2)設(shè)小王某月生產(chǎn)A種型號(hào)零件x件,該月工資為y元,求y與x的函數(shù)關(guān)系式;
(3)如果生產(chǎn)兩種型號(hào)零件的數(shù)目無限制,那么小王該月的工資數(shù)目最多為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的分式方程 ﹣3= 有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組 的解集為x<﹣2,那么符合條件的所有整數(shù)a的積是( )
A.﹣3
B.0
C.3
D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com