【題目】如圖,沿水庫攔水壩的背水坡將壩頂加寬2米,坡度由原來的改為.已知壩高8米,壩長為60.

求:(1)加寬部分橫斷面的面積;

2)完成這一工程需要多少立方米土?

【答案】1)加寬部分橫斷面積為32平方米;(2)完成這一工程需要1920立方米的土

【解析】

(1)過點A,過點F垂足分別為G,K,易求出FKAG,結(jié)合已知坡度的變化,可求得BGEK,繼而求得加寬部分橫截面的面積;

(2)由壩長為60米,根據(jù)體積公式可求得完成這一過程需要的土.

解:(1),垂足為,作,垂足為.

∵壩高為8米,

.

.,

米,

米,

.

平方米.即加寬部分橫斷面積為32平方米.

(2)立方米.完成這一工程需要1920立方米的土.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,在平面直角坐標系xOy中,點A的坐標為(02),點P(m,n)是拋物線上的一個動點.

(1)如圖1,過動點PPBx軸,垂足為B,連接PA,請通過測量或計算,比較PAPB的大小關(guān)系:PA_____PB(直接填寫”““=”,不需解題過程);

(2)請利用(1)的結(jié)論解決下列問題:

①如圖2,設(shè)C的坐標為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點P的坐標;如果不存在,簡單說明理由;

②如圖3,過動點P和原點O作直線交拋物線于另一點D,若AP=2AD,求直線OP的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點GOC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca≠0)的對稱軸為x=﹣1,且拋物線經(jīng)過 A1,0),C0,3)兩點,與x軸交于點B

1)求拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求此時點M的坐標;

3)設(shè)點P為拋物線對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.FBC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E.

(1)當點F運動到邊BC的中點時,求點E的坐標;

(2)連接EF,求∠EFC的正切值;

(3)如圖2,將CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開展陽光體育運動,計劃購買籃球和足球.已知購買20個籃球和40個足球的總金額為4600元;購買30個籃球和50個足球的總金額為6100.

1)每個籃球、每個足球的價格分別為多少元?

2)若該校購買籃球和足球共60個,且購買籃球的總金額不超過購買足球的總金額,則該校最多可購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了掌握某次數(shù)學模擬考試卷的命題質(zhì)量與難度系數(shù),命題教師選取一個水平相當?shù)某跞昙夁M行調(diào)研,命題教師將隨機抽取的部分學生成績分為5組:第一組7590;第二組90105;第三組105120;第四組120135;第五組135150.統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.觀察圖形的信息,回答下列問題:

請將頻數(shù)分布直方圖補充完整;若老師找到第五組中一個學生的語文、數(shù)學、英語三科成績,如表.老師將語文、數(shù)學、英語成績按照352的比例給出這位同學的綜合分數(shù).求此同學的綜合分數(shù).

科目

語文

數(shù)學

英語

得分

120

146

140

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,的內(nèi)心,延長的外接圓于點,則的度數(shù)是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.

(1)求這條直線的解析式及點B的坐標;

(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

同步練習冊答案