【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請完善解答過程,并在括號內(nèi)填寫相應的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質(zhì))

【答案】BAC AB DE 同位角相等,兩直線平行 兩直線平行,同旁內(nèi)角互補

【解析】

先根據(jù)等量代換以及同位角相等,兩直線平行判定ABDE,再根據(jù)兩直線平行,同旁內(nèi)角互補即可求得∠ABD的度數(shù)。

解:∵∠E50°,∠BAC50°,(已知)

∴∠E_BAC 等量代換)

ABDE同位角相等,兩直線平行

∴∠ABD+D180°兩直線平行,同旁內(nèi)角互補

∴∠D110°,(已知)

∴∠ABD70°.(等式的性質(zhì))

故答案為:(1). BAC (2). AB (3). DE (4). 同位角相等,兩直線平行 (5). 兩直線平行,同旁內(nèi)角互補

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市準備將一批帳篷和食品送往扶貧區(qū).已知帳篷和食品共320件,且?guī)づ癖仁称范?/span>80件.

(1)直接寫出帳篷有   件,食品有   件;

(2)現(xiàn)計劃租用A、B兩種貨車共8輛,一次性將這批物資全部送到扶貧區(qū),已知兩種車可裝帳篷和食品的件數(shù)以及每輛貨車所需付運費情況如表,問:共有幾種租車的方案?最少運費是多少?

帳篷(件)

食品(件)

每輛需付運費(元)

A種貨車

40

10

780

B種貨車

20

20

700

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸相交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)連接BC,點P為拋物線上第一象限內(nèi)一動點,當△BCP面積最大時,求點P的坐標;
(3)設點D是拋物線的對稱軸上的一點,在拋物線上是否存在點Q,使以點B,C,D,Q為頂點的四邊形為平行四邊形?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:)

(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);

(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;

(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(30天計算)的節(jié)約用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P在對角線AC上,EAC的延長線上,PBPM , DEEF.

(1)求證:∠CDE=∠F;
(2)若AB=5,CM=1,求PB的長;
(3)如圖2,若BF=10,△QCF是以CF為底的等腰三角形,連接DQ , 試求△CDQ的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,拋物線的對稱軸與拋物線交于點P,與直線BC交于點M,且PM= AB.

(1)求拋物線的解析式;
(2)點K是x軸正半軸上一點,點A、P關于點K的對稱點分別為 、 ,連接 、 ,若 ,求點K的坐標;
(3)矩形ADEF的邊AF在x軸負半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個單位,直線AD、EF分別交拋物線于G、H.問:是否存在實數(shù)t,使得以點D、F、G、H為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中有ABC,若小方格邊長為1,請你根據(jù)所學的知識解答下列問題:

(1)判斷ABC是什么形狀?并說明理由.

(2)求ABCBC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于點E.

(1)如圖1,若點D在斜邊BC上,DM垂直平分BE,垂足為M.求證:BD=AE.

(2)如圖2,過點BBFCECE的延長線于點F.CE=6,求BEC的面積.

查看答案和解析>>

同步練習冊答案