【題目】如圖(),在正方形中,上一點,延長線上一點,且

(1)求證:

(2)在如圖()中,若上,且,則成立嗎?

證明你的結(jié)論.(3)運用(1)(2)解答中積累的經(jīng)驗和知識,完成下題:

如圖()四邊形中,(),,上一點,且,求的長

【答案】(1)見解析;(2)成立,理由見解析;(3)5

【解析】1)因為ABCD為正方形,所以CB=CD,∠B=∠CDA=90°,又因為DF=BE,則△BCE≌△DCF,即可求證CE=CF;

(2)因為∠BCD=90°,∠GCE=45°,則有∠BCE+∠GCD=45°,又因為△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,則△ECG≌△FCG,故GE=BE+GD成立;

(3)①過點CCG⊥ADAD的延長線于點G,利用勾股定理求得DE的長.

1)在正方形ABCD CB=CD,∠B=CDA=90°,

∴∠CDF=B=90°

在△BCE和△DCF中,

∴△BCE≌△DCFSAS).

CE=CF

2GE=BE+GD成立.理由如下:

∵∠BCD=90°,∠GCE=45°,

∴∠BCE+GCD=45°

∵△BCE≌△DCF(已證),

∴∠BCE=DCF

∴∠GCF=GCD+DCF=GCD+BCE=45°

∴∠ECG=FCG=45°

在△ECG和△FCG中,

∴△ECG≌△FCGSAS).

GE=FG

FG=GD+DF,

GE=BE+GD

3)①如圖2,過點CCGAD,交AD的延長線于點G,

由(2)和題設(shè)知:DE=DG+BE

設(shè)DG=x,則AD=6-x,DE=x+3,

RtADE中,由勾股定理得:AD2+AE2=DE2,

∴(6-x2+32=x+32

解得x=2

DE=2+3=5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】貴陽市某消防支隊在一幢居民樓前進行消防演習,如圖所示,消防官兵利用云梯成功救出在C處的求救者后,發(fā)現(xiàn)在C處正上方17米的B處又有一名求救者,消防官兵立刻升高云梯將其救出,已知點A與居民樓的水平距離是15米,且在A點測得第一次施救時云梯與水平線的夾角∠CAD=60°,求第二次施救時云梯與水平線的夾角∠BAD的度數(shù)(結(jié)果精確到1°).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,∠ABC=60°,過點B作AC的平行線交DC的延長線于點E.

(1) 求證:四邊形ABEC為菱形;

(2) 若AB=6,連接OE,求OE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點F在邊AC上,DFBE相交于點G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A、B、C是固定在桌面上的三根立柱,其中A柱上穿有三個大小不同的圓片,下面的直徑總比上面的大現(xiàn)想將這三個圓片移動到B柱上,要求每次只能移動一片叫移動一次,被移動的圓片只能放入A、B、C三個柱之一且較大的圓片不能疊在小片的上面,那么完成這件事情至少要移動圓片的次數(shù)是  

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明放學騎車回家過程中,離校的路程s與時間t的關(guān)系如圖,其中小明先以平時回家的速度騎車,中間因事停留片刻,因此加快速度,請根據(jù)圖象回答下列問題:

開始10分鐘內(nèi)的速度是多少?

若小明在停留后速度每分鐘加快100米,求a的值和小明平時回家所需的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,且AF=CE=AE

1)說明四邊形ACEF是平行四邊形;

2)當∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac0③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案