【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,△ABC的三個頂點在互相平行的三條直線l1,l2,l3上,且l1,l2之間的距離是1,l2,l3之間的距離是2,則BC的長度為_____.
【答案】2.
【解析】
過點B作BE⊥l1于點E,過點C作CF⊥l1于點F,由余角的性質可得∠CAF=∠BAE,由“AAS”可證△ABE≌△CAF,可得AE=CF=1,由勾股定理可求AB的長,BC的長.
解:如圖,過點B作BE⊥l1于點E,過點C作CF⊥l1于點F,
∵l1,l2之間的距離是1,l2,l3之間的距離是2,
∴BE=3,CF=1,
∵∠BAC=90°,BE⊥AF
∴∠BAE+∠CAF=90°,∠BAE+∠ABE=90°
∴∠CAF=∠BAE,且AB=AC,∠AEB=∠AFC=90°
∴△ABE≌△CAF(AAS)
∴AE=CF=1,
∴在Rt△ABE中,AB==
∵∠BAC=90°,AB=AC
∴BC=AB=2
故答案為:2
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣(2m+1)x+m(m+1)=0,
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設方程的兩根分別為x1、x2,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);
(2)若這個輸水管道有水部分的水面寬AB=8 cm,水面最深地方的高度為2 cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過點A(3,0),對稱軸為直線x=1,給出以下結論:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)為函數(shù)圖象上的兩點,則y1<y2,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AG交CD于點H,若∠C=120°,則∠AHD=( 。
A. 120° B. 30° C. 150° D. 60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,在L1上任取一點P,過點P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點M,N(點M在點N的左側).
(1)當L1與L2重合時,求點P的坐標;
(2)當點P與點B重合時,求此時L2的解析式;并直接寫出L1與L2中,y均隨x的增大而減小時的x的取值范圍;
(3)連接PM,PB,設點P(m,n),當n= m時,求△PMB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com