【題目】已知反比例函數(shù)的圖象過點

求函數(shù)的解析式.的增大而如何變化?

,哪些點在圖象上?

畫出這個函數(shù)的圖象.

【答案】(1)見解析;(2) 在該函數(shù)圖象上;(3)見解析.

【解析】

(1)設該反比例函數(shù)的解析式為,把點A坐標代入求出k的值即可得出反比例函數(shù)的解析式,根據(jù)反比例函數(shù)性質(zhì)即可得出答案.(2)根據(jù)(1)所得解析式逐一進行判斷即可.(3)利用描點法及圖像性質(zhì)即可畫出.

(1)設該反比例函數(shù)的解析式為,則

,

解得,

所以,該反比例函數(shù)的解析式為 ,


∴該反比例函數(shù)經(jīng)過第二、四象限,且在每一象限內(nèi),的增大而增大;

知,該反比例函數(shù)的解析式為,則

,,

∴點不在該函數(shù)圖象上,點在該函數(shù)圖象上;

反比例函數(shù)的圖象過點,由知,該反比例函數(shù)經(jīng)過第二、四象限,且在每一象限內(nèi),的增大而增大;所以其圖象如圖所示:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙兩個不透明的布袋,甲袋中裝有個完全相同的小球,分別標有數(shù)字,,;乙袋中裝有個完全相同的小球,分別標有數(shù)字,;小宇從甲袋中隨機摸出一個小球,記下數(shù)字為,小惠從乙袋中隨機摸出一個小球,記下的數(shù)字為

若點的坐標為,求點在第四象限的概率;

已知關于的一元二次方程,求該方程有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法合理的是(

A. 某彩票中獎的機會是,那么某人買了張彩票,肯定有一張中獎

B. 小美在次拋圖釘?shù)脑囼炛邪l(fā)現(xiàn)了次釘尖朝上,據(jù)此他認為釘尖朝上的概率為

C. 拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面反面的概率相等,因此拋次的話,一定有正面”,反面

D. 在一次課堂上進行的試驗中,甲、乙兩組同學估計一枚硬幣落地后正面朝上的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面坐標系中,對于點和點,給出如下定義:

,則稱點為點的變限點。例如:點的變限點的坐標,點 的變限點的坐標。

1)點的變限點的坐標是 ;點的變限點的坐標是 .

2)已知直線軸交于點,點在直線上,其變限點為,若為坐標原點)的面積等于,求點的坐標.

3)已知點在函數(shù)的圖象上,其變限點的縱坐標的取值范圍是,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明(視為小黑點)站在一個高為10米的高臺A上,利用旗桿OM頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B.那么小明在蕩繩索的過程中離地面的最低點的高度MN是(

A.2B.2.2C.2.5D.2.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿ADEFGB的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有一個3×3的正方形網(wǎng)格,其右下角格點(小正方形的頂點)A的坐標為(﹣1,1),左上角格點B的坐標為(﹣44),若分布在過定點(﹣1,0)的直線y=﹣kx+1)兩側(cè)的格點數(shù)相同,則k的取值可以是(  )

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計),這些薄板的形狀均為正方形,邊長(單位:cm)在550之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與薄板的大小無關,是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù).

薄板的邊長(cm)

20

30

出廠價(元/張)

50

70

(1)求一張薄板的出廠價與邊長之間滿足的函數(shù)關系式;

(2)40cm的薄板,獲得的利潤是26元(利潤=出廠價﹣成本價).

①求一張薄板的利潤與邊長之間滿足的函數(shù)關系式;

②當邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案