如圖所示,已知直線AB及AB外一點(diǎn)C, 過點(diǎn)C作直線EF∥AB (要求:不寫作法,保留作圖痕跡)(5分)

作圖見解析.

解析試題分析:①過C作AB的相交線,與AB交于H點(diǎn);②以H點(diǎn)為圓心,任意長為半徑化弧,交AC于D,交HG于G;③以C為圓心,以HG長為半徑化弧,交HC于M;④以M為圓心,DG長為半徑化弧交前弧于N,④過CN畫直線EF即可
試題解析:如圖所示:

直線EF即為所求.
考點(diǎn):作圖—基本作圖.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖所示,以O(shè)為端點(diǎn)畫六條射線后OA,OB,OC,OD,OE,O后F,再從射線OA上某點(diǎn)開始按逆時針方向依次在射線上描點(diǎn)并連線,若將各條射線所描的點(diǎn)依次記為1,2,3,4,5,6,7,8…后,那么所描的第2013個點(diǎn)在射線   上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖:BD平分∠ABC,F在AB上,G在AC上,F(xiàn)C與BD相交于點(diǎn)H.
求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:                                                        
依據(jù)2:                                                        
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點(diǎn)M,BC的延長線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△中,,垂足為,點(diǎn)上,,垂足為
(1)平行嗎?為什么?
(2)如果,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直線AB與直線BC相交于點(diǎn)B,點(diǎn)D是直線BC上一點(diǎn),求作:點(diǎn)E,使直線DE∥AB,且點(diǎn)E到B、D兩點(diǎn)的距離相等.(尺規(guī)作圖,要求在題目的原圖中完成作圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,點(diǎn)O是邊AC上一個動點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知a∥b,小亮把三角板的直角頂點(diǎn)放在直線b上,若∠1=40°,則∠2的度數(shù)為________.

查看答案和解析>>

同步練習(xí)冊答案