【題目】如圖,等腰直角△ABC中,AC=BC,∠ACB=90°,點(diǎn)O分斜邊AB為BO:OA=1: ,將△BOC繞C點(diǎn)順時針方向旋轉(zhuǎn)到△AQC的位置,則∠AQC=

【答案】105°
【解析】解:連接OQ, ∵AC=BC,∠ACB=90°,
∴∠BAC=∠B=45°,
由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,
∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,
∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,
∴∠OQC=45°,
∵BO:OA=1: ,
設(shè)BO=1,OA=
∴AQ=1,則tan∠AQO= =
∴∠AQO=60°,
∴∠AQC=105°.

【考點(diǎn)精析】掌握等腰直角三角形和旋轉(zhuǎn)的性質(zhì)是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點(diǎn)A、B、C,AB=60,點(diǎn)A對應(yīng)的數(shù)是40

1,求點(diǎn)C到原點(diǎn)的距離;

2如圖2,在1的條件下,動點(diǎn)P、Q兩點(diǎn)同時從C、A出發(fā)向右運(yùn)動,同時動點(diǎn)R從點(diǎn)A向左運(yùn)動,已知點(diǎn)P的速度是點(diǎn)R的速度的3倍,點(diǎn)Q的速度是點(diǎn)R的速度2倍少5個單位長度/秒經(jīng)過5秒,點(diǎn)P、Q之間的距離與點(diǎn)Q、R之間的距離相等,求動點(diǎn)Q的速度;

3如圖3,在1的條件下,O表示原點(diǎn),動點(diǎn)P、T分別從C、O兩點(diǎn)同時出發(fā)向左運(yùn)動,同時動點(diǎn)R從點(diǎn)A出發(fā)向右運(yùn)動,點(diǎn)P、T、R的速度分別為5個單位長度/秒、1個單位長度/秒、2個單位長度/秒,在運(yùn)動過程中,如果點(diǎn)M為線段PT的中點(diǎn),點(diǎn)N為線段OR的中點(diǎn)請問的值是否會發(fā)生變化?若不變,請求出相應(yīng)的數(shù)值;若變化,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,…,2 009排列成如圖所示的一個表.

(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是__ __,__ __,__ __;

(2)在(1)前提下,當(dāng)被框住的4個數(shù)之和等于416時,x的值是多少?

(3)在(1)前提下,被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,BE、CF分別是ACAB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接ADAG

1)求證:AD=AG;

2ADAG的位置關(guān)系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的根的情況(
A.兩根都大于0
B.兩根都等于0
C.兩根都小于0
D.一根大于0,一根小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(12),B(3,1)C(-2,-1).

1)在圖中作出關(guān)于軸對稱的.

2)寫出點(diǎn)的坐標(biāo)(直接寫答案).

A1_____________,B1______________,C1______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大正方體上截去一個小正方體后,可得到圖的幾何體.

設(shè)原大正方體的表面積為,圖中幾何體的表面積為,那么的大小關(guān)系是( )

、、、、不確定

小明說:設(shè)圖中大正方體各棱的長度之和為,圖中幾何體各棱的長度之和為,那么正好多出大正方體條棱的長度.若設(shè)大正方體的棱長為,小正方體的棱長為,請問為何值時,小明的說法才正確?

如果截去的小正方體的棱長為大正方體棱長的一半,那么圖是圖中幾何體的表面展開圖嗎?如有錯誤,請?jiān)趫D中修正.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EGEF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案