【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①b2﹣4ac>0;②abc>0;③a+c>0;④9a+3b+c<0.其中,正確的結(jié)論有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
根據(jù)拋物線與x軸有兩個(gè)交點(diǎn)對①進(jìn)行判斷;由拋物線開口方向得到a>0,由拋物線對稱軸為直線x=﹣=1得到b=﹣2a,b<0,由拋物線與y軸的交點(diǎn)在x軸下方得到c<0,則可對②進(jìn)行判斷;根據(jù)x=﹣1時(shí),y<0,則a﹣b+c<0,即a+c<b,這樣可對③進(jìn)行判斷;根據(jù)拋物線的對稱性可得到拋物線與x軸的另一個(gè)交點(diǎn)在(3,0)和(4,0)之間,則x=3時(shí),y<0,即9a+3b+c<0,則可對④進(jìn)行判斷.
解:∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,所以①正確;
∵拋物線開口向上,
∴a>0,
又∵拋物線對稱軸為直線x=﹣=1,
∴b=﹣2a,b<0,
∵拋物線與y軸的交點(diǎn)在x軸下方,
∴c<0,
∴abc>0,所以②正確;
∵x=﹣1時(shí),y<0,即a﹣b+c<0,
∴a+c<b<0,所以③錯(cuò)誤;
∵拋物線對稱軸為直線x=1,而拋物線與x軸的一個(gè)交點(diǎn)在(﹣2,0)和(﹣1,0)在之間,
∴拋物線與x軸的另一個(gè)交點(diǎn)在(3,0)和(4,0)之間,
∴當(dāng)x=3時(shí),y<0,即9a+3b+c<0,所以④正確.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】馬路兩側(cè)有兩根燈桿AB、CD,當(dāng)小明站在點(diǎn)N處時(shí),在燈C的照射下小明的影長正好為NB,在燈A的照射下小明的影長為NE,測得BD=24m,NB=6m,NE=2m.
(1)若小明的身高M(jìn)N=1.6m,求AB的長;
(2)試判斷這兩根燈桿的高度是否相等,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北山水果市場是我區(qū)最大的水果批發(fā)市場,張老師想購買甲、乙、丙三種水果,如果購買甲2千克,乙1千克,丙4千克,共需付錢36元:如果購買甲4千克,乙2千克,丙2千克,共需付錢32元.今要購買甲4千克,乙2千克,丙5千克,則共應(yīng)付_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c的圖象與x軸交于A(2,0),B(﹣8,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣8).
(1)求拋物線的解析式;
(2)點(diǎn)F是直線BC下方拋物線上的一點(diǎn),當(dāng)△BCF的面積最大時(shí),求出點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點(diǎn)Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點(diǎn)Q的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是正方形ABCD申CD邊上任意一點(diǎn).
(1)以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形;
(2)在BC邊上畫一點(diǎn)F,使△CFE的周長等于正方形ABCD的周長的一半,請簡要說明你取該點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B分別為切點(diǎn),PO交圓于點(diǎn)C,若∠APB=60°,PC=6,則AC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).以為頂點(diǎn)作,射線交邊于點(diǎn),過點(diǎn)作交射線于點(diǎn).
(1)求證:;
(2)當(dāng)平分時(shí),求的長;
(3)當(dāng)是等腰三角形時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘貨輪由西向東航行,在處測得燈塔在它的北偏東60°方向,繼續(xù)航行到達(dá)處,測得燈塔在正南方向10海里的處是港口,點(diǎn)、、在一條直線上,則這艘貨輪由處到處航行的路程為__________海里(結(jié)果保留根號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com