【題目】如圖,在中,,,點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).以為頂點(diǎn)作,射線交邊于點(diǎn),過點(diǎn)作交射線于點(diǎn).
(1)求證:;
(2)當(dāng)平分時(shí),求的長(zhǎng);
(3)當(dāng)是等腰三角形時(shí),求的長(zhǎng).
【答案】(1)見解析;(2);(3)當(dāng)是等腰三角形時(shí),的長(zhǎng)11或或
【解析】
(1)根據(jù)題意證明即可求解;
(2)根據(jù)平分得到,再根據(jù)得到得到,從而得到,即可求解;
(3)過點(diǎn)作,垂足為,根據(jù)三線合一得到,由勾股定理得出,再得到,設(shè),則,,根據(jù)得到,再分①點(diǎn)在線段的延長(zhǎng)線上, ②點(diǎn)在線段上,當(dāng)是等腰三角形進(jìn)行討論求解.
(1)證明:
即
(2)平分,
又是公共角,
(3)過點(diǎn)作,垂足為
由勾股定理得出,
設(shè),則,,
①點(diǎn)在線段的延長(zhǎng)線上,當(dāng)是等腰三角形時(shí),存在以下三種情況:
1.,則
2.,則
3.,則
②點(diǎn)在線段上,當(dāng)是等腰三角形時(shí),
是一個(gè)鈍角
只存在這種可能,則
,不符合題意,舍去
綜上所述,當(dāng)是等腰三角形時(shí),的長(zhǎng)11或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)移動(dòng)過程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①b2﹣4ac>0;②abc>0;③a+c>0;④9a+3b+c<0.其中,正確的結(jié)論有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊鐵片下腳料,其外輪廓中的曲線是拋物線的一部分,要裁出一個(gè)等邊三角形,使其一個(gè)頂點(diǎn)與拋物線的頂點(diǎn)重合,另外兩個(gè)頂點(diǎn)在拋物線上,求這個(gè)等邊三角形的邊長(zhǎng)(結(jié)果精確到,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)在上,且,的平分線交于點(diǎn),點(diǎn)是的中點(diǎn),連結(jié).若四邊形DCFE和△BDE的面積都為3,則△ABC的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=60°,在∠AOB的平分線OM上有一點(diǎn)C,∠DCE=120°,當(dāng)∠DCE的頂點(diǎn)與點(diǎn)C重合,它的兩條邊分別與直線OA、OB相交于點(diǎn)D、E.
(1)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖1),請(qǐng)猜想OE+OD與OC的數(shù)量關(guān)系,并說明理由;
(2)由(圖1)的位置將∠DCE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)θ角(0<θ<90°),線段OD、OE與OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=a(x﹣h)2+k(a≠0)的圖象是拋物線,定義一種變換,先作這條拋物線關(guān)于原點(diǎn)對(duì)稱的拋物線y′,再將得到的對(duì)稱拋物線y′向上平移m(m>0)個(gè)單位,得到新的拋物線ym,我們稱ym叫做二次函數(shù)y=a(x﹣h)2+k(a≠0)的m階變換.
(1)已知:二次函數(shù)y=2(x+2)2+1,它的頂點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為 ,這個(gè)拋物線的2階變換的表達(dá)式為 .
(2)若二次函數(shù)M的6階變換的關(guān)系式為y6′=(x﹣1)2+5.
①二次函數(shù)M的函數(shù)表達(dá)式為 .
②若二次函數(shù)M的頂點(diǎn)為點(diǎn)A,與x軸相交的兩個(gè)交點(diǎn)中左側(cè)交點(diǎn)為點(diǎn)B,在拋物線y6′=(x﹣1)2+5上是否存在點(diǎn)P,使點(diǎn)P與直線AB的距離最短,若存在,求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線y=﹣3x2﹣6x+1的頂點(diǎn)為點(diǎn)A,與y軸交于點(diǎn)B,該拋物線的m階變換的頂點(diǎn)為點(diǎn)C.若△ABC是以AB為腰的等腰三角形,請(qǐng)直按寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.
畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;
(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.
所以直線AD就是過點(diǎn)A的圓的切線.
請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
根據(jù)以往所學(xué)的函數(shù)知識(shí)以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個(gè)問題).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com