【題目】已知點D與點A(8,0),B(0,6),C(a,﹣a)是一平行四邊形的四個頂點,則CD長的最小值為.

【答案】7
【解析】解:有兩種情況: ①CD是平行四邊形的一條邊,那么有AB=CD= =10
②CD是平行四邊形的一條對角線,
過C作CM⊥AO于M,過D作DF⊥AO于F,交AC于Q,過B作BN⊥DF于N,
則∠BND=∠DFA═∠CMA=∠QFA=90°,
∠CAM+∠FQA=90°,∠BDN+∠DBN=90°,
∵四邊形ACBD是平行四邊形,
∴BD=AC,∠C=∠D,BD∥AC,
∴∠BDF=∠FQA,
∴∠DBN=∠CAM,
∵在△DBN和△CAM中

∴△DBN≌△CAM(AAS),
∴DN=CM=a,BN=AM=8﹣a,
D((8﹣a,6+a),
由勾股定理得:CD2=(8﹣a﹣a)2+(6+a+a)2=8a2﹣8a+100=8(a﹣ 2+98,
當a= 時,CD有最小值,是
<10,
∴CD的最小值是 =7
解法二:
CD是平行四邊形的一條對角線
設CD、AB交于點E,
∵點E為AB的中點,
∴E( ),即E(4,3)
∵CE=DE,
∴當DE取得最小值時,CE自然為最小,
∵C(a,﹣a),
∴C點可以看成在直線y=﹣x上的一點,
∴CE最小值為點E到直線的距離,即CE⊥直線y=﹣x,
根據(jù)兩直線垂直,斜率乘積為﹣1,
∴CE所在直線為y=x+b,代入E(4,3),可得y=x﹣1,
∴C點坐標為兩直線交點: ,即:( ,﹣
∴CE為: =
∴CD=7
所以答案是:7

【考點精析】利用平行四邊形的性質對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠A = 3C = 90,AB = 3,點Q在邊AB上且BQ =,過QQFBCAC于點F,點P在線段QF上,過PPDACAB于點D,PEABBC于點E,當P到△ABC的三邊的距離之和為3時,PD + PE + PF =_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,若二次函數(shù)y= x2+bx+c的圖象與x軸交于A(﹣2,0),B(3,0)兩點,點A關于正比例函數(shù)y= x的圖象的對稱點為C.

(1)求b、c的值;
(2)證明:點C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)y= x的圖象于點D,連結AC,交正比例函數(shù)y= x的圖象于點E,連結AD、CD.如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動.當其中一個點到達終點時,另一個點隨之停止運動,連結PQ、QE、PE.設運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)為方便游客參觀,在每個景點均設置兩條通道,即樓梯和無障礙通道.如圖,已知在某景點P處,供游客上下的樓梯傾斜角為30°(即∠PBA=30°),長度為4m(即PB=4m),無障礙通道PA的傾斜角為15°(即∠PAB=15°).求無障礙通道的長度.(結果精確到0.1m,參考數(shù)據(jù):sin15°≈0.21,cos15°≈0.98)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx﹣3(a,b是常數(shù))的圖象與x軸交于點A(﹣3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.

(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“課程選修”的情況,對報名參加“藝術鑒賞”,“科技制作”,“數(shù)學思維”,“閱讀寫作”這四個選修項目的學生(每人限報一課)進行抽樣調查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調查了名學生,扇形統(tǒng)計圖中“藝術鑒賞”部分的圓心角是度;
(2)請把這個條形統(tǒng)計圖補充完整;
(3)現(xiàn)該校共有800名學生報名參加這四個選修項目,請你估計其中有多少名學生選修“科技制作”項目.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程ax2+3x-1=0有兩個不相等的實數(shù)根,則a的取值范圍是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一路燈距地面5.6米,身高1.6米的小方從距離燈的底部(點O)5米的A處,沿OA所在的直線行走到點C時,人影長度增長3米,則小方行走的路程AC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點E,點FAC上,且BD=DF.

(1)求證:CF=EB;

(2)請你判斷AE、AFBE之間的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案