【題目】如圖,在四邊形ABCD中,點(diǎn)E,F是對(duì)角線BD上的兩點(diǎn),且BEDF

1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;

2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.

【答案】1)見解析;(2)見解析

【解析】

1)證明OA=OC,OB=OD即可解決問題;

2)證明四邊形ABCD是平行四邊形,再證明ACBD即可證明.

證明:連接ACBDO,

1)∵四邊形AECF是平行四邊形,

OAOC,OEOF,

BEDF,

OBOD,

OAOC,

∴四邊形ABCD是平行四邊形.

2)∵四邊形AECF是菱形,

OAOC,OEOF,ACEF,

BEDF

OBOD,∵OAOC,

∴四邊形ABCD是平行四邊形,

ACBD,

∴四邊形ABCD是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某加工廠以每噸3000元的價(jià)格購進(jìn)50噸原料進(jìn)行加工.若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需天,每噸售價(jià)4000元;若進(jìn)行精加工,每噸加工費(fèi)用為900元,需天,每噸售價(jià)4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.

1)請(qǐng)完成表格并求出yx的函數(shù)關(guān)系式(不要求寫自變量的范圍);

表一

粗加工數(shù)量/

3

7

x

精加工數(shù)量/

47

    

    

表二

粗加工數(shù)量/

3

7

x

粗加工獲利/

    

2800

    

精加工獲利/

    

25800

    

2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某商場(chǎng)從一樓到二樓的自動(dòng)扶梯,圖2是側(cè)面示意圖,MN是二樓樓頂,MNPQ,點(diǎn)CMN上,且位于自動(dòng)扶梯頂端B點(diǎn)的正上方,BCMN.測(cè)得AB10米,在自動(dòng)扶梯底端A處測(cè)得點(diǎn)C的仰角為50°,點(diǎn)B的仰角為30°,求二樓的層高BC(結(jié)果保留根號(hào))

(參考數(shù)據(jù):sin50°0.77cos50°0.64,tan50°1.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD,連接AF,CE、AF平分BC于點(diǎn)F,CE平分AD于點(diǎn)E

1)如圖1,求證:四邊形AFCE為平行四邊形;

2)如圖2,連接BD,分別交AF、CEG、H,若,在不添加其他輔助線的情況下,直接找出圖中面積為平行四邊形ABCD面積的的三角形或四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,AD=,在邊CD上有一點(diǎn)E,使EB平分∠AEC.若P為BC邊上一點(diǎn),且BP=2CP,連接EP并延長(zhǎng)交AB的延長(zhǎng)線于F.給出以下五個(gè)結(jié)論:

①點(diǎn)B平分線段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.

其中正確結(jié)論的序號(hào)是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識(shí)競(jìng)賽,某班進(jìn)行了四次模擬訓(xùn)練,將成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖:

(1)該班總?cè)藬?shù)是 ;

(2)根據(jù)計(jì)算,請(qǐng)你補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;

(3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫出一條你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠C90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O

1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦!)

2)若AC3,BC4,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF70°,求河流的寬度(結(jié)果精確到個(gè)位,1.73,sin70°0.94cos70°0.34,tan70°2.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,.點(diǎn)P是平面內(nèi)不與點(diǎn)A,C重合的任意一點(diǎn).連接AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α得到線段DP,連接ADBD,CP

1)觀察猜想

如圖1,當(dāng)時(shí),的值是   ,直線BD與直線CP相交所成的較小角的度數(shù)是   

2)類比探究

如圖2,當(dāng)時(shí),請(qǐng)寫出的值及直線BD與直線CP相交所成的小角的度數(shù),并就圖2的情形說明理由.

3)解決問題

當(dāng)時(shí),若點(diǎn)E,F分別是CACB的中點(diǎn),點(diǎn)P在直線EF上,請(qǐng)直接寫出點(diǎn)C,P,D在同一直線上時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案