【題目】解不等式組 ,并寫(xiě)出它的整數(shù)解.
【答案】解:解不等式3x+1≤2(x+1),得:x≤1,
解不等式﹣x<5x+12,得:x>﹣2,
則不等式組的解集為:﹣2<x≤1,
則不等式組的整數(shù)解為﹣1、0、1
【解析】解不等式組的基本步驟去分母、移項(xiàng)、合并同類(lèi)項(xiàng)化為最簡(jiǎn)形式,套用口訣:小大大小,求出解集,再取整數(shù)解.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的解法和一元一次不等式組的整數(shù)解的相關(guān)知識(shí)點(diǎn),需要掌握解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒(méi)有公共部分,則這個(gè)不等式組無(wú)解 ( 此時(shí)也稱(chēng)這個(gè)不等式組的解集為空集 );使不等式組中的每個(gè)不等式都成立的未知數(shù)的值叫不等式組的解,一個(gè)不等式組的所有的解組成的集合,叫這個(gè)不等式組的解集(簡(jiǎn)稱(chēng)不等式組的解)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:0×1×2×3+1=(_______)2;
1×2×3×4+1=(______)2;
2×3×4×5+1=(_______)2;
3×4×5×6+1=(_______)2;
……
(2)根據(jù)以上規(guī)律填空:4×5×6×7+1=(_____)2;
____×___×_____×_____+1=(55)2.
(3)小明說(shuō):“任意四個(gè)連續(xù)自然數(shù)的積與1的和都是某個(gè)奇數(shù)的平方”.你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.
當(dāng)t為何值時(shí),四邊形ABQP是矩形;
當(dāng)t為何值時(shí),四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)y=kx﹣2k(k<0),與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,AB=2.
(1)直接寫(xiě)出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)如圖2,以AB為邊,在第一象限內(nèi)畫(huà)出正方形ABCD,求直線(xiàn)DC的解析式;
(3)如圖3,(2)中正方形ABCD的對(duì)角線(xiàn)AC、BD即交于點(diǎn)G,函數(shù)y=mx和y=(x≠0)的圖象均經(jīng)過(guò)點(diǎn)G,請(qǐng)利用這兩個(gè)函數(shù)的圖象,當(dāng)mx>時(shí),直接寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形 OABC 的頂點(diǎn) A、C 分別在 x 軸和 y 軸上,頂點(diǎn)B 在第一象限,OA//CB.
(1)如圖 1,若點(diǎn) A(6,0),B(4,3),點(diǎn) M 是 y 軸上一點(diǎn),且 SBCM SAOM ,求點(diǎn) M的坐標(biāo);
(2)如圖 2,點(diǎn) P 是 x 軸上點(diǎn) A 左邊的一點(diǎn),連接 PB,∠PBC 和∠PAB 的角平分線(xiàn)交于點(diǎn)D,求證:∠ABP+2∠ADB=180°;
(3)如圖 3,點(diǎn) P 是 x 軸上點(diǎn) A 左邊的一點(diǎn),點(diǎn) Q 是射線(xiàn) BC 上一點(diǎn),連接 PB、PQ,∠ABP和∠BQP 的平分線(xiàn)相交于點(diǎn) E,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫(xiě)出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的對(duì)角線(xiàn)AC=12,∠ACO=30°
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)G()作GF⊥AC,垂足為F,直線(xiàn)GF分別交AB、OC于點(diǎn)E、D,求直線(xiàn)DE的解析式;
(3)在⑵的條件下,若點(diǎn)M在直線(xiàn)DE上,平面內(nèi)是否存在點(diǎn)P,使以O(shè)、F、M、P為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電信公司提供的移動(dòng)通訊服務(wù)的收費(fèi)標(biāo)準(zhǔn)有兩種套餐如表
套餐 | 套餐 | |
每月基本服務(wù)費(fèi)(元) | 20 | 30 |
每月免費(fèi)通話(huà)時(shí)間(分) | 100 | 150 |
每月超過(guò)免費(fèi)通話(huà)時(shí)間加收通話(huà)費(fèi)(元/分) | 0.4 | 0.5 |
李民選用了套餐
(1)5月份李民的通話(huà)時(shí)間為120分鐘,這個(gè)月李民應(yīng)付話(huà)費(fèi)多少元?
(2)李民6月份的通話(huà)時(shí)間超過(guò)了150分鐘,根據(jù)自己6月份的通話(huà)時(shí)間情況計(jì)算,如果自己選用套餐可以省4元錢(qián),李民6月份的通話(huà)時(shí)間是多少分鐘?
(3)10月份李民改用了套餐,李民發(fā)現(xiàn)如果與9月份交相同的話(huà)費(fèi),10月份他可以多通話(huà)15分鐘,李民9月份交了多少話(huà)費(fèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線(xiàn)的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱(chēng) , ;
(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你直接寫(xiě)出所有以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊且有對(duì)角線(xiàn)相等的勾股四邊形OAMB的頂點(diǎn)M的坐標(biāo).
(3)如圖2,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DBE,連接AD、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
(4)若將圖2中△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)a度(0°<a<90°),得到△DBE,連接AD、DC,則∠DCB= °,四邊形ABCD是勾股四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com