【題目】如圖,已知點Amm+3),點Bnn3)是反比例函數(shù)yk0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為(

A.B.6C.D.9

【答案】A

【解析】

由點Am,m+3),點Bn,n3)在反比例函數(shù)yk0)第一象限的圖象上,可得到mn之間的關系,過點A、B分別作x軸、y軸的平行線,構造直角三角形,可求出直角三角形的直角邊的長,由平移可得直角三角形的直角頂點在直線l上,進而將問題轉化為求△ADB的面積.

解:∵點Amm+3),點Bnn3)在反比例函數(shù)yk0)第一象限的圖象上,

kmm+3)=nn3),

即:(m+n)(mn+3)=0,

m+n0

mn+30,即:mn=﹣3,

過點AB分別作x軸、y軸的平行線相交于點D,

BDxBxAnm3,ADyAyBm+3﹣(n3)=mn+63,

又∵直線l是由直線AB向下平移3個單位得到的,

∴平移后點A與點D重合,

因此,點D在直線l上,

SACBSADBADBD

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》中記載:今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?譯文:今有甲乙二人,不知其錢包里有多少錢.若乙把自己一半的錢給甲,則甲的錢數(shù)為50錢;而甲把自己的錢給乙,則乙的錢數(shù)也為50錢.問甲、乙各有多少錢?設甲、乙原有錢數(shù)分別為,下列所列方程組正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線軸交于點.

(1)求拋物線的函數(shù)表達式;

(2)設直線與拋物線的對稱軸的交點為是拋物線上位于對稱軸右側的一點,若,且的面積相等,求點的坐標;

(3)若在軸上有且只有一點,使,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,點,,依次是邊的四等分點,點依次是邊的四等分點,分別以,,為邊向下剪三個寬相等的矩形,如圖所示.若圖中空白部分的面積和為,則圖中陰影部分的面積和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人在山坡坡腳處測得一座建筑物頂點的仰角為,沿山坡向上走到處再測得該建筑物頂點的仰角為.已知米,的延長線交于點,山坡坡度為(即).注:取

1)求該建筑物的高度(即的長).

2)求此人所在位置點的鉛直高度(測傾器的高度忽略不計).

3)若某一時刻,米長木棒豎放時,在太陽光線下的水平影長是米,則同一時刻該座建筑物頂點投影與山坡上點重合,求點到該座建筑物的水平距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y1x22x3,一次函數(shù)y2x1

1)在同一坐標系中,畫出這兩個函數(shù)的圖象;

2)根據(jù)圖形,求滿足y1y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校積極開展“陽光體育”活動,并開設了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).

1)求本次被調查的學生人數(shù);

2)補全條形統(tǒng)計圖;

3)該校共有3000名學生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+ca<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:

①4a+2b<0;

②﹣1≤a;

對于任意實數(shù)m,a+bam2+bm總成立;

關于x的方程ax2+bx+cn﹣1有兩個不相等的實數(shù)根.

其中結論正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).

(1)求k、m的值;

(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.

①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;

②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

同步練習冊答案