【題目】如圖,把 個邊長為1的正方形拼接成一排,求得 , ,計算 , ……按此規(guī)律,寫出 (用含 的代數(shù)式表示).

【答案】;
【解析】解:如圖,過點C作CE⊥A4B于E,易得∠A4BC=∠BA4A1 ,
故tan∠A4BC=tan∠BA4A1=,
在Rt△BCE中,由tan∠A4BC=,得BE=4CE,而BC=1,
則BE= , CE= ,
而A4B=,
所以A4E=A4B-BE=
在Rt△A4EC中,tan∠BA4C=

根據(jù)前面的規(guī)律,不能得出tan∠ BA1C=,tan∠ BA2C=,tan∠ BA3C=,tan∠ BA4C=
則可得規(guī)律tan∠ BAnC==。
所以答案是;
【考點精析】根據(jù)題目的已知條件,利用解直角三角形的相關知識可以得到問題的答案,需要掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分線AD、BD相交于點D,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校九(1)班40名同學的期中測試成績分別為a1 , a2 , a3 , …,a40 . 已知a1+a2+a3+…+a40=4800,y=(a﹣a12+(a﹣a22+(a﹣a32+…+(a﹣a402 , 當y取最小值時,a的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個,若從中任意摸出一個球是白球的概率是
(1)求暗箱中紅球的個數(shù).
(2)先從暗箱中任意摸出一個球記下顏色后放回,再從暗箱中任意摸出一個球,求兩次摸到的球顏色不同的概率(用樹形圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=x2﹣6mx+5與y軸的交點為A,與x軸的正半軸分別交于點B(b,0),C(c,0).
(1)當b=1時,求拋物線相應的函數(shù)表達式;
(2)當b=1時,如圖,E(t,0)是線段BC上的一動點,過點E作平行于y軸的直線l與拋物線的交點為P.求△APC面積的最大值;

(3)當c=b+n時,且n為正整數(shù),線段BC(包括端點)上有且只有五個點的橫坐標是整數(shù),求b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點,△OMN的面積為10.若動點Px軸上,則PMPN的最小值是(  )

A. 6 B. 10 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 的中線, 是線段 上一點(不與點 重合). 于點 , ,連結(jié)

(1)如圖1,當點 重合時,求證:四邊形 是平行四邊形;
(2)如圖2,當點 不與 重合時,(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長 于點 ,若 ,且
①求 的度數(shù);
②當 , 時,求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

+(+);

90﹣(﹣3);

﹣0.5﹣(﹣3)+2.75﹣(+7);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AB延長線上一點,D為線段BC上一點,CD2BDE為線段AC上一點,CE2AE

(1)AB18,BC21,求DE的長;

(2)ABa,求DE的長;(用含a的代數(shù)式表示)

(3)若圖中所有線段的長度之和是線段AD長度的7倍,則的值為   

查看答案和解析>>

同步練習冊答案