【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是 .
【答案】1
【解析】解:延長EP交BC于點(diǎn)F, ∵∠APB=90°,∠APE=∠BPC=60°,
∴∠EPC=150°,
∴∠CPF=180°﹣150°=30°,
∴PF平分∠BPC,
又∵PB=PC,
∴PF⊥BC,
設(shè)Rt△ABP中,AP=a,BP=b,則
CF= CP= b,a2+b2=22=4,
∵△APE和△ABD都是等邊三角形,
∴AE=AP,AD=AB,∠EAP=∠DAB=60°,
∴∠EAD=∠PAB,
∴△EAD≌△PAB(SAS),
∴ED=PB=CP,
同理可得:△APB≌△DCB(SAS),
∴EP=AP=CD,
∴四邊形CDEP是平行四邊形,
∴四邊形CDEP的面積=EP×CF=a× b= ab,
又∵(a﹣b)2=a2﹣2ab+b2≥0,
∴2ab≤a2+b2=4,
∴ ab≤1,
即四邊形PCDE面積的最大值為1.
故答案為:1
先延長EP交BC于點(diǎn)F,得出PF⊥BC,再判定四邊形CDEP為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出:四邊形CDEP的面積=EP×CF=a× b= ab,最后根據(jù)a2+b2=4,判斷 ab的最大值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 與 軸交于點(diǎn)A、B,與 軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤;
(3)問:把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤總額比同期用線下方式銷售所能獲得的利潤總額至少多出200萬元?(利潤=銷售額﹣經(jīng)銷成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,1),點(diǎn)B在x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角三角形ABC,使點(diǎn)C在第一象限,∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,則表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于點(diǎn)O,D是線段OB上一點(diǎn),DE=2,ED∥AC(∠ADE<90°),連接BE、CD.設(shè)BE、CD的中點(diǎn)分別為P、Q.
(1)求AO的長;
(2)求PQ的長;
(3)設(shè)PQ與AB的交點(diǎn)為M,請(qǐng)直接寫出|PM﹣MQ|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售甲、乙兩種糖果,購買3千克甲種糖果和1千克乙種糖果共需44元,購買1千克甲種糖果和2千克乙種糖果共需38元.
(1)求甲、乙兩種糖果的價(jià)格;
(2)若購買甲、乙兩種糖果共20千克,且總價(jià)不超過240元,問甲種糖果最少購買多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a>0,c<0)交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,設(shè)過點(diǎn)A,B,C三點(diǎn)的圓與y軸的另一個(gè)交點(diǎn)為D.
(1)如圖1,已知點(diǎn)A,B,C的坐標(biāo)分別為(﹣2,0),(8,0),(0,﹣4);
①求此拋物線的表達(dá)式與點(diǎn)D的坐標(biāo);
②若點(diǎn)M為拋物線上的一動(dòng)點(diǎn),且位于第四象限,求△BDM面積的最大值;
(2)如圖2,若a=1,求證:無論b,c取何值,點(diǎn)D均為定點(diǎn),求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com