【題目】如圖,已知點P是⊙O外一點,PB切⊙O于點B,BA 垂直O(jiān)P于C,交⊙O于點A,連接PA、AO,延長AO,交⊙O于點E.
(1)求證:PA是⊙O的切線;
(2)若tan∠CAO= ,且OC=4,求PB的長.
【答案】
(1)證明:連接OB,則OA=OB,
∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB,
在△PAO和△PBO中,
∵ ,
∴△PAO≌△PBO(SSS),
∴∠PAO=∠PBO,
∵PB為⊙O的切線,B為切點,
∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,
∴PA是⊙O的切線;
(2)解:∵tan∠CAO= = ,且OC=4,
∴AC=6,
∴AB=12
在Rt△ACO中,AO= = =2 .
顯然△ACO∽△PAO,
∴ = ,即 = ,
∴PA=3 ,
∴PB=PA=3 .
【解析】(1)證明△PAO≌△PBO,根據(jù)全等三角形的對應角相等證得∠PAO=∠PBO,則∠PBO=90°,根據(jù)切線的判定定理證得;(2)在Rt△ACO中,利用勾股定理求得OA的長,然后根據(jù)△ACO∽△PAO,利用相似三角形的對應邊的比相等求解.
【考點精析】認真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點G,H分別是BC、CD邊上的點,直線GH與AB、AD的延長線相交于點E,F(xiàn),連接AG、AH.
(1)當BG=2,DH=3時,則GH:HF= , ∠AGH=°;
(2)若BG=3,DH=1,求DF、EG的長;
(3)設BG=x,DH=y,若△ABG∽△FDH,求y與x之間的函數(shù)關系式,并求出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線y=﹣ x﹣6與x軸、y軸分別相交于A,B兩點.
(1)求出A,B兩點的坐標;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;
(3)設(2)中的拋物線交x軸于D、E兩點,在拋物線上是否存在點P,使得
S△PDE= S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y= x2+bx+c經(jīng)過點A(﹣4,0)、B(2,0)兩點,與y軸交于點C,頂點為D,對稱軸與x軸交于點H,過點H的直線m交拋物線于P、Q兩點,其中點P位于第二象限,點Q在y軸的右側.
(1)求D點坐標;
(2)若∠PBA= ∠OBC,求點P的坐標;
(3)設PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.
(1)如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.
(3)在圖(2)中,若AB=AC=10,BC=12,當S△DEF= S△ABC時,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A的坐標為(1,0),P是第一象限內任意一點,連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點P 的“雙角坐標”.例如,點(1,1)的“雙角坐標”為(45°,90°).
(1)點( , )的“雙角坐標”為;
(2)若點P到x軸的距離為 ,則m+n的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com