【題目】如圖,P是邊長為3的等邊△ABCAB上一動點,沿過點P的直線折疊∠B,使點B落在AC上,對應(yīng)點為D,折痕交BCE,點DAC的一個三等分點,PB的長為______.

【答案】

【解析】

兩種情形:①如圖1中,當(dāng)ADAC1時,設(shè)PBx,②如圖2中,當(dāng)ADAC2時,利用相似三角形的性質(zhì)求解即可.

解:兩種情形:①如圖1中,當(dāng)ADAC1時,設(shè)PBx

∵△ABC是等邊三角形,

ABBCAC3,∠A=∠B=∠C60°,

∵∠PDE=∠B60°,∠PDC=∠PDE+EDC=∠A+APD,

60°+EDC60°+APD,

∴∠EDC=∠APD,

∴△APD∽△CDE

,

,

BEDE,EC,

BE+EC3

+3,

x

②如圖2中,當(dāng)ADAC2時,

由△APD∽△CDE,可得,

DE,EC,

BE+EC3,

3,

x,

綜上所述,PB的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,,點、分別是、的中點,連接.

1)在圖①中,的值為______;的值為______.

2)若將繞點逆時針方向旋轉(zhuǎn)得到,點、的對應(yīng)點為,在旋轉(zhuǎn)過程中的大小是否發(fā)生變化?請僅就圖②的情形給出證明.

3)當(dāng)在旋轉(zhuǎn)一周的過程中,,,三點共線時,請你直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠C=90°,點O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.

(1)求證:DE是⊙O的切線;

(2)若B=30°,BC=,且ADDF=12,求O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點P、Q分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S

1)求出S關(guān)于t的函數(shù)關(guān)系式;

2)當(dāng)點P運動幾秒時,SPCQ=SABC?

3)作PE⊥AC于點E,當(dāng)點P、Q運動時,線段DE的長度是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點AC的坐標(biāo)分別為A(﹣3,0),C1,0),tan∠BAC=

1)求過點A,B的直線的函數(shù)表達式;

2)在x軸上找一點D,連接BD,使得△ADB△ABC相似(不包括全等),并求點D的坐標(biāo);

3)在(2)的條件下,如PQ分別是ABAD上的動點,連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ△ADB相似?如存在,請求出的m值;如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.

(1)作出ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若(1)中所作的角平分線交AD于點E,AFBE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為,且過點,有下列結(jié)論:①0;②0;③;④0.其中正確的結(jié)論是(

A.①③B.①④C.①②D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線yx交于點M,∠AMB90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點AB,四邊形OAMB的面積為6

1)求k的值;

2)點P在(1)的反比例函數(shù)yx0)的圖象上,若點P的橫坐標(biāo)為3,在x軸上有一點D40),若在直線yx上有動點C,構(gòu)成PDC,其面積為3,請寫出C點的坐標(biāo);

3)若∠EPF90°,其兩邊分別為與x軸正半軸,直線yx交于點EF,問是否存在點E,使PEPF?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案