【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為18m),另外三邊利用學(xué),校現(xiàn)有總長38m的鐵欄圍成.
(1)若圍成的面積為,試求出自行車車棚的長和寬;
(2)能圍成面積為的自行車車棚嗎?如果能,請你給出設(shè)計方案;如果不能,請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x2+(a+3)x+a+1=0是關(guān)于x的一元二次方程.
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)若方程的一個實數(shù)根為1,求實數(shù)a的值和另一個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;
②拋物線與的“完美三角形”的斜邊長的數(shù)量關(guān)系是 ;
(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于( 。
A.B.C.4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,BC=6.點P從點A出發(fā),沿折線AB—BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動.點Q從點C出發(fā),沿CA方向以每秒2個單位長度的速度運動.點P、Q兩點同時出發(fā),當(dāng)點P停止時,點Q也隨之停止.設(shè)點P運動的時間為t秒.
(1)求線段AC的長.
(2)求線段BP的長.(用含t的代數(shù)式表示)
(3)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)連結(jié)PQ,當(dāng)PQ與△ABC的一邊平行或垂直時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+8交x軸于點E,點A為x軸上的一個動點(點A不與點E重合),在直線l上取一點B(點B在x軸上方),使BE=5AE,連接AB,以AB為邊沿順時針方向作正方形ABCD,連結(jié)OB,以OB為直徑作⊙P.
(1)當(dāng)點A在點E右側(cè)時.
①若點B剛好落在y軸上,則線段BE的長為 ,點D的坐標(biāo)為 .
②若點A的坐標(biāo)為(9,0),求正方形ABCD的邊長.
(2)⊙P與正方形ABCD的邊相切于點B,求點B的坐標(biāo).
(3)點Q為⊙P與直線BE的交點,連接CQ,當(dāng)CQ平分∠BCD時,點B的坐標(biāo)為 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,△COD關(guān)于CD的對稱圖形為△CED.
(1)求證:四邊形OCED是菱形;
(2)連接AE,交CD于點M,連接OM,取OM的中點F,連接EF.
①根據(jù)題意補全圖形;
②若∠ACD=30°,請用等式表示線段CM、DE、EF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com