【題目】已知拋物線y=a(x﹣m)2+n與y軸交于點A,它的頂點為點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x﹣2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x﹣m)2+n(m>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x﹣m)2+n的伴隨直線是y=﹣2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(用含b的代數(shù)式表示);若不存在,請說明理由.

【答案】
(1)

解:由拋物線y=a(x﹣m)2+n與y軸交于點A,它的頂點為點B,

∴拋物線y=(x﹣2)2+1的與y軸交于點A(0,5),它的頂點為點B(2,1),

設(shè)所求直線解析式為y=kx+b,

解得: ,

∴所求直線解析式為y=﹣2x+5


(2)

解:如圖,作BE⊥AC于點E,由題意得四邊形ABCD是平行四邊形,

點A的坐標為(0,﹣3),

點C的坐標為(0,3),

可得:AC=6,

∵平行四邊形ABCD的面積為12,

∴SABC=6即SABC= ACBE=6,

∴BE=2,

∵m>0,即頂點B在y軸的右側(cè),且在直線y=x﹣3上,

∴頂點B的坐標為(2,﹣1),

又拋物線經(jīng)過點A(0,﹣3),

∴a=﹣ ,

∴y=﹣ (x﹣2)2﹣1


(3)

解:①如圖,作BF⊥x軸于點F,

由已知可得A坐標為(0,b),C點坐標為(0,﹣b),

∵頂點B(m,n)在直線y=﹣2x+b(b>0)上,

∴n=﹣2m+b,即點B點的坐標為(m,﹣2m+b),

在矩形ABCD中,CO=BO.

∴b= ,

∴b2=m2+4m2﹣4mb+b2

∴m= b,

n=﹣2× b+b=﹣ b,

②∵B點坐標為(m,n),即( b,﹣ b),

∴BO= =b,

∴BD=2b,

當BD=BP,

∴PF=2b﹣ b= b,

∴P點的坐標為( b, b);

如圖3,當DP=PB時,

過點D作DE⊥PB,于點E,

∵B點坐標為( b,﹣ b),

∴D點坐標為(﹣ b, b),

∴DE= b,BE= b,設(shè)PE=x,

∴DP=PB= b+x,

∴DE2+PE2=DP2

+x2=( b+x)2,

解得:x= b,

∴PF=PE+EF= b+ b= b,

∴此時P點坐標為:( b, b);

同理P可以為( b,﹣ b);( b, b),

故P點坐標為:( b, b);( b, b);( b,﹣ b);( b, b).


【解析】(1)利用拋物線y=(x﹣2)2+1的與y軸交于點A(0,5),它的頂點為點B(2,1),求出直線解析式即可;(2)首先得出點A的坐標為(0,﹣3),以及點C的坐標為(0,3),進而求出BE=2,得出頂點B的坐標求出解析式即可;(3)①由已知可得A坐標為(0,b),C點坐標為(0,﹣b),以及n=﹣2m+b,即點B點的坐標為(m,﹣2m+b),利用勾股定理求出;②利用①中B點坐標,以及BD的長度即可得出P點的坐標.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人從 兩地同時出發(fā),甲騎自行車,乙騎摩托車,沿同一條直線公路相向勻速行駛.出發(fā)后經(jīng)小時兩人相遇.已知在相遇時乙比甲多行駛了千米,且摩托車的速度是自行車速度的

1)問甲、乙行駛的速度分別是多少?

2)甲、乙行駛多少小時,兩車相距千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,彈性小球從P(2,0)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2,第n次碰到正方形的邊時的點為Pn,則P2018的坐標是( 。

A. (5,3) B. (3,5) C. (0,2) D. (2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A、B的坐標分別為A(-4,0)、B(2,0),點Cy軸上,且△ABC的面積為6,以點A、B、C為頂點作□ABCD.若過原點的直線平分該ABCD的面積,則此直線的解析式是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,彈性小球從P(2,0)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2,第n次碰到正方形的邊時的點為Pn,則P2018的坐標是( 。

A. (5,3) B. (3,5) C. (0,2) D. (2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(-35),B(-21),C(-1,3).

1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1

2)畫出A1B1C1沿x軸向右平移4個單位長度后得到的A2B2C2;

3)如果AC上有一點Mab)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點M2的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8分2014年12月28日青煙威榮城際鐵路正式開通從煙臺到北京的高鐵里程比普快里程縮短了81千米,運行時間減少了9小時已知煙臺到北京的普快列車里程月1026千米,高鐵平均時速是普快平均時速的25倍

1求高鐵列車的平均時速;

2某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到

當日8:40從煙臺到該是的高鐵票,而且從該市火車站到會議地點最多需要15小時試問在高鐵列車準點到達的情況下他能在開會之前趕到嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】籌建中的城南中學(xué)需720套單人課桌椅(如圖),光明廠承擔了這項生產(chǎn)任務(wù).該廠生產(chǎn)桌子必須5人一組.每組每天可生產(chǎn)12張;生產(chǎn)椅子必須4人一組,每組每天可生產(chǎn)24把.已知學(xué)校籌建組要求光明廠6天完成這項生產(chǎn)任務(wù).
(1)問光明廠平均毎天要生產(chǎn)多少套單人課桌椅?
(2)現(xiàn)學(xué)校籌建組要求至少提前1天完成這項生產(chǎn)任務(wù).光明廠生產(chǎn)課桌椅的員工增加到84名,試給出一種分配生產(chǎn)桌子、椅子的員工數(shù)的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列材料來自2006年5月衢州有關(guān)媒體的真實報道:有關(guān)部門進行民眾安全感滿意度調(diào)查,方法是:在全市內(nèi)采用等距抽樣,抽取32個小區(qū),共960戶,每戶抽一名年滿16周歲并能清楚表達意見的人,同時,對比前一年的調(diào)查結(jié)果,得到統(tǒng)計圖如下:
寫出2005年民眾安全感滿意度的眾數(shù)選項是;該統(tǒng)計圖存在一個明顯的錯誤是

查看答案和解析>>

同步練習(xí)冊答案