【題目】如圖,已知拋物線y=ax2+bx+cx軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結論正確的是 .(寫出所有正確結論的序號)

①b0

②a﹣b+c0

陰影部分的面積為4

c=﹣1,則b2=4a

【答案】③④

【解析】

試題首先根據(jù)拋物線開口向上,可得a0;然后根據(jù)對稱軸為x=﹣0,可得b0,據(jù)此判斷即可.根據(jù)拋物線y=ax2+bx+c的圖象,可得x=﹣1時,y0,即a﹣b+c0,據(jù)此判斷即可.首先判斷出陰影部分是一個平行四邊形,然后根據(jù)平行四邊形的面積=×高,求出陰影部分的面積是多少即可.根據(jù)函數(shù)的最小值是,判斷出c=﹣1時,a、b的關系即可.拋物線開口向上,

∴a0,又對稱軸為x=﹣0,∴b0,結論不正確;

∵x=﹣1時,y0,∴a﹣b+c0結論不正確;

拋物線向右平移了2個單位,平行四邊形的底是2,函數(shù)y=ax2+bx+c的最小值是y=﹣2,

平行四邊形的高是2,陰影部分的面積是:2×2=4,結論正確;

,c=﹣1,∴b2=4a,結論正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為件.試營銷階段發(fā)現(xiàn):當銷售單價是元時,每天的銷售量為件;銷售單價每上漲元,每天的銷售量就減少件.

1)寫出商場銷售這種文具,每天所得的銷售利潤()與銷售單價()之間的函數(shù)關系式.

2)當銷售單價定為多少元時,該文具每天的銷售利潤最大?最大利潤為多少元?

3)商場的營銷部結合上述情況,提出了,兩種營銷方案:

方案:該文具的銷售單價高于進價,但不超過元;

方案:每天銷售量不少于件,且每件文具的利潤至少為元.

請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC8,BC6,點P從點B出發(fā)以1個單位/s的速度向點A運動,同時點Q從點C出發(fā)以2個單位/s的速度向點B運動.當以B,P,Q為頂點的三角形與△ABC相似時,運動時間為( 。

A.sB.sC.ssD.以上均不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,F為弦AC的中點,連接OF并延長交弧AC于點D,過點DO的切線,交BA的延長線于點E

(1)求證:ACDE;

(2)連接CD,若OAAE=2時,求出四邊形ACDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC 中,AB=AC,點 M BA 的延長線上,點 N BC 的延長線上,過點 C CDAB 交∠CAM 的平分線于點 D

1)如圖 1,求證:四邊形 ABCD 是平行四邊形;

2)如圖 2,當∠ABC=60°時,連接 BD,過點 D DEBD,交 BN 于點 E,在不添加任何輔助線的情況下,請直接寫出圖 2 中四個三角形(不包含CDE),使寫出的每個三角形的面積與CDE 的面積相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店在兩周內(nèi),將標價為10/斤的某種水果,經(jīng)過兩次降價后的價格為8.1/斤,并且兩次降價的百分率相同.

1)求該種水果每次降價的百分率;

2)從第一次降價的第1天算起,第天(為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.

時間(天)

售價(元/斤)

1次降價后的價格

2次降價后的價格

銷量(斤)

儲存和損耗費用(元)

已知該種水果的進價為4.1/斤,設銷售該水果第(天)的利潤為(元),求)之間的函數(shù)解析式,并求出第幾天時銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù),下列說法正確的個數(shù)是(

①函數(shù)圖象位于第一、三象限;②函數(shù)值 y x 的增大而減;③若 A(-1, ),B2,),C(1,)是圖象上三個點,則 <<;④P 為圖象上任一點,過 P PQy 軸于點 Q,則OPQ 的面積是定值.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為的拋物線經(jīng)過點,下列結論:①;②;③若點在拋物線上,則;④關于的一元二次方程的兩根為,其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BDABC的角平分線,E,F分別在BC,AB,DEAB,BE=AF

(1)求證四邊形ADEF是平行四邊形;

(2)若ABC=60°,BD=4,求平行四邊形ADEF的面積.

查看答案和解析>>

同步練習冊答案