【題目】(1)如圖,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直線交于點F,求∠BFC的度數(shù);
(2)在(1)的基礎上,若∠BAC每秒擴大10°,且在變化過程中∠ABC與∠ACB始終保持是銳角,經(jīng)過t秒(0<t<14),在∠BFC,∠BAC這兩個角中,當一個為另一個的兩倍時,求t的值;
(3)在(2)的基礎上,∠ABD與∠ACE的角平分線交于點G,∠BGC是否為定值,如果是,請直接寫出∠BGC的值,如果不是,請寫出∠BGC是如何變化的.
【答案】(1)140°;(2)t=2或8;(3)∠BGC是定值,為90°.
【解析】
(1)利用鈍角的余角相等,證明∠CFD=∠A即可解決問題.
(2)由題意∠A=40°+10°×t,∠BFC=180°﹣∠A=140°﹣10°×t.分兩種情形:①當0<t<5時,∠BFC=2∠A.②當5<t<14時,∠A=2∠BFC,分別構建方程求解即可.
(3)如圖,結論∠BGC是定值.想辦法證明∠G=∠A+∠ABG+∠ACG,∠ABG+∠ACG=∠ABD即可解決問題.
解:(1)∵BD⊥AC于D,CE⊥AB于E,
∴∠AEC=∠BDC=90°,
∴∠A+∠ACE=90°,∠ACE+∠CFD=90°,
∴∠CFD=∠A
∴∠BFC=180°﹣∠DFC=180°﹣∠A=140°.
(2)由題意∠A=40°+10°×t,∠BFC=180°﹣∠A=140°﹣10°×t.
①當0<t<5時,∠BFC=2∠A,則有140﹣10t=2(40+10t),
解得t=2.
②當5<t<14時,∠A=2∠BFC,
∴40+10t=2(140﹣10t),
解得t=8,
綜上所述,當t=2或8時,∠BFC,∠A兩個角中,一個角是另一個角的兩倍.
(3)如圖,結論∠BGC是定值.
理由:∵BD⊥AC于D,CE⊥AB于E,
∴∠AEC=∠ADB=90°,
∴∠A+∠ABD=90°,∠A+∠ACE=90°,
∴∠ABD=∠ACE,
∵BG平分∠ABD,CG平分∠ACB,
∠ABG=∠ABD,∠ACG=∠ACE,
∴∠ABG+∠ACG=(∠ABD+∠ACE)=∠ABD,
∵∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∠G+∠GBC+∠GCB=180°,
∴∠G=∠A+∠ABG+∠ACG=∠A+∠ABD=90°,
∴∠BGC是定值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形的頂點、分別在軸與軸上,且點,點,點為矩形、兩邊上的一個點.
(1)當點與重合時,求直線的函數(shù)解析式;
(2)如圖②,當在邊上,將矩形沿著折疊,點對應點恰落在邊上,求此時點的坐標.
(3)是否存在使為等腰三角形?若存在,直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有黑、白兩種顏色的球共50個,這些球除顏色外其余完全相同.王穎做摸球試驗,攪勻后,她從盒子里隨機摸出一個球記下顏色后,再把球放回盒子中,不斷重復上述過程,下表是試驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 480 | 601 | 1800 |
摸到白球的頻率 |
(1)若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為______.
(2)試估算盒子里黑、白兩種顏色的球各有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為AB邊上一點,連接DE,將△ADE繞點D逆時針旋轉90°得到△CDF,作點F關于CD的對稱點,記為點G,連接DG.
(1)依題意在圖1中補全圖形;
(2)連接BD,EG,判斷BD與EG的位置關系并在圖2中加以證明;
(3)當點E為線段AB的中點時,直接寫出∠EDG的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線相交于點E,BE交CD于點F,∠1+∠2=90°.試說明:(1)直線AB//CD.(2) 如果∠1=55°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于任何數(shù)a,符號[a]表示不大于a的最大整數(shù).例如:[5.7]=5,[5]=5,[-1.5]=-2.
(1)[-π]= ;
(2)如果[a]=2,那么a的取值范圍是 ;
(3)如果[]=-5,求滿足條件的所有整數(shù)x;
(4)直接寫出方程6x-3[x]+7=0的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請把下面證明過程補充完整
如圖,已知AD⊥BC于D,點E在BA的延長線上,EG⊥BC于C,交AC于點F,∠E=∠1.求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( ),
∴∠ADC=∠EGC=90°( ),
∴AD∥EG( ),
∴∠1=∠2( ),
∴_____=∠3( ),
又∵∠E=∠1(已知),∴∠2=∠3( ),
∴AD平分∠BAC( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(x,y),點B(x﹣my,mx﹣y)(其中m為常數(shù),且m≠0),則稱B是點A的“m族衍生點”.例如:點A(1,2)的“3族衍生點”B的坐標為(1﹣3×2,3×1﹣2),即B(﹣5,1).
(1)點(2,0)的“2族衍生點”的坐標為 ;
(2)若點A的“3族衍生點”B的坐標是(﹣1,5),則點A的坐標為 ;
(3)若點A(x,0)(其中x≠0),點A的“m族衍生點“為點B,且AB=OA,求m的值;
(4)若點A(x,y)的“m族衍生點”與“﹣m族衍生點”都關于y軸對稱,則點A的位置在 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com