【題目】在一個不透明的盒子里裝有黑、白兩種顏色的球共50個,這些球除顏色外其余完全相同.王穎做摸球試驗,攪勻后,她從盒子里隨機摸出一個球記下顏色后,再把球放回盒子中,不斷重復上述過程,下表是試驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 480 | 601 | 1800 |
摸到白球的頻率 |
(1)若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為______.
(2)試估算盒子里黑、白兩種顏色的球各有多少個?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下面直角坐標系中,已知A(0,a),B(b,0),C(b,c)三點,其中a、b、c滿足關系式.
(1)求a、b、c的值;
(2)如果在第二象限內有一點P(m,),請用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點,AD=2BD,BE=CE,設△ADF的面積為S1,△CEF的面積為S2,若S1﹣S2=a,則S△ABC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一塊直角三角板的直角頂點繞著矩形()對角線交點旋轉(如圖①→②→③),、分別為直角三角板的直角邊與矩形的邊、的交點.
(1)發(fā)現(xiàn):在圖①中,當三角板的一直角邊與重合,易證,
證明方法如下:連接,
∵為矩形
∴
又∵
∴
又∵
∴
∴
在圖③中,當三角板的一直角邊與重合,求證:.
(2)根據(jù)以上學習探究:圖②中、、、這四條線段之間的數(shù)量關系,寫出你的結論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年共享單車橫空出世,更好地解決了人們“最后一公里”出行難的問題.截止到2016年底,“ofo共享單車”的投放數(shù)量是“摩拜單車”投放數(shù)量的1.6倍,覆蓋城市也遠超于“摩拜單車”,“ofo共享單車”注冊用戶量約為960萬人,“摩拜單車”的注冊用戶量約為750萬人,據(jù)統(tǒng)計使用一輛“ofo共享單車”的平均人數(shù)比使用一輛“摩拜單車”的平均人數(shù)少3人,假設注冊這兩種單車的用戶都在使用共享單車,求2016年“摩拜單車”的投放數(shù)量約為多少萬臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中央電視臺舉辦的“中國漢字聽寫大會”節(jié)目受到中學生的廣泛關注.某中學為了了解學生對觀看“中國漢字聽寫大會”節(jié)目的喜愛程度,對該校部分學生進行了隨機抽樣調查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡),C類(一般),D類(不喜歡).已知A類和B類所占人數(shù)的比是5:9,請結合兩幅統(tǒng)計圖,回答下列問題:
(1)寫出本次抽樣調查的樣本容量;
(2)請補全兩幅統(tǒng)計圖;
(3)若該校有2000名學生.請你估計觀看“中國漢字聽寫大會”節(jié)目不喜歡的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直線交于點F,求∠BFC的度數(shù);
(2)在(1)的基礎上,若∠BAC每秒擴大10°,且在變化過程中∠ABC與∠ACB始終保持是銳角,經過t秒(0<t<14),在∠BFC,∠BAC這兩個角中,當一個為另一個的兩倍時,求t的值;
(3)在(2)的基礎上,∠ABD與∠ACE的角平分線交于點G,∠BGC是否為定值,如果是,請直接寫出∠BGC的值,如果不是,請寫出∠BGC是如何變化的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個全等的△ABC 和△DBE 按圖 1 方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點 E 落在 AB 上,DE 所在直線交 AC 所在直線于點 F.
(1)若將圖 1 中的△DBE 繞點 B 按順時針方向旋轉角α,且 0°<α<60°,其它條件不變,如圖 2,請你直接寫出線段 AF,EF,DE 的數(shù)量關系;
(2)若將圖 1 中的△DBE 繞點 B 按順時針方向旋轉角β,且 60°≤β≤180°,其它條件不變.
①如圖 3,(1)中線段 AF,EF,DE 的數(shù)量關系是否仍然成立,若成立,請證明該結論;若不成立,請寫出新的結論并證明.
②如圖 4,AB 中點為 M,BE 中點為 N,若 BC= 2,連接 MN,當β= 度時,MN 長度最大,最大值為 (直接寫出答案即可)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com