【題目】計(jì)算或化簡:
(1);
(2)(﹣a)3a2+(2a4)2÷a3;
(3)(2x﹣y)2﹣(y+x)(y﹣x);
(4).
【答案】(1)4;(2)3a5;(3)5x2﹣4xy;(4)x2﹣2x+2.
【解析】
(1)原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及乘方的意義計(jì)算即可求出值;
(2)原式利用冪的乘方與積的乘方運(yùn)算法則計(jì)算,然后合并同類項(xiàng)即可得到結(jié)果;
(3)原式利用完全平方公式,以及平方差公式計(jì)算,去括號(hào)合并即可得到結(jié)果;
(4)原式利用多項(xiàng)式乘多項(xiàng)式法則,以及單項(xiàng)式乘多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果.
解:(1)原式=2+1﹣(﹣1)
=2+1+1
=4;
(2)原式=﹣a5+4a5
=3a5;
(3)原式=4x2﹣4xy+y2﹣y2+x2
=5x2﹣4xy;
(4)原式=﹣x2﹣x+2+2x2﹣x
=x2﹣2x+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)、、的坐標(biāo)分別為,,.若點(diǎn)從點(diǎn)出發(fā),沿軸正方向以每秒1個(gè)單位長度的速度向點(diǎn)移動(dòng),連接并延長到點(diǎn),使,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接.若點(diǎn)在移動(dòng)的過程中,使成為直角三角形,則點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊直角三角板的直角頂點(diǎn)繞著矩形()對(duì)角線交點(diǎn)旋轉(zhuǎn)(如圖①→②→③),、分別為直角三角板的直角邊與矩形的邊、的交點(diǎn).
(1)發(fā)現(xiàn):在圖①中,當(dāng)三角板的一直角邊與重合,易證,
證明方法如下:連接,
∵為矩形
∴
又∵
∴
又∵
∴
∴
在圖③中,當(dāng)三角板的一直角邊與重合,求證:.
(2)根據(jù)以上學(xué)習(xí)探究:圖②中、、、這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺(tái)舉辦的“中國漢字聽寫大會(huì)”節(jié)目受到中學(xué)生的廣泛關(guān)注.某中學(xué)為了了解學(xué)生對(duì)觀看“中國漢字聽寫大會(huì)”節(jié)目的喜愛程度,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計(jì)圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡),C類(一般),D類(不喜歡).已知A類和B類所占人數(shù)的比是5:9,請結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問題:
(1)寫出本次抽樣調(diào)查的樣本容量;
(2)請補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若該校有2000名學(xué)生.請你估計(jì)觀看“中國漢字聽寫大會(huì)”節(jié)目不喜歡的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(﹣2,﹣1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求該一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直線交于點(diǎn)F,求∠BFC的度數(shù);
(2)在(1)的基礎(chǔ)上,若∠BAC每秒擴(kuò)大10°,且在變化過程中∠ABC與∠ACB始終保持是銳角,經(jīng)過t秒(0<t<14),在∠BFC,∠BAC這兩個(gè)角中,當(dāng)一個(gè)為另一個(gè)的兩倍時(shí),求t的值;
(3)在(2)的基礎(chǔ)上,∠ABD與∠ACE的角平分線交于點(diǎn)G,∠BGC是否為定值,如果是,請直接寫出∠BGC的值,如果不是,請寫出∠BGC是如何變化的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以O(shè)A為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,將△APB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一定角度后,可得到△CQB.
(1)求點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com